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I ,  ABSTRACT 

The na tu ra l  l i n e  widths of  2p-1s t r a n s i t i o n s  i n  low-2 p ion ic  

atoms have been measured using high-resolut ion l i th ium-dr i f ted  s i l i c o n  

[Si  (Li) ] and germanium [Ge (Li) 3 de tec to r s ,  High r e so lu t ion  was achieved 

by developing a low-noise cooled FET preampl i f ie r  which allowed the  

inhe ren t ly  good reso lv ing  c a p a b i l i t y  of  S i (Li )  and Ge(Li) de t ec to r s  t o  

be more f u l l y  explo i ted  than was previous ly  poss ib l e .  The instrumental  

r e so lu t ion  as measured with muonic X-rays was 0.62 keV ( F W )  a t  33 keV 

f o r  the  S i (L i )  spectrometer,  and 1.1 keV (FWHM) a t  75 keV f o r  t h e  Ge(Li) 

spectrometer.  

Pionic  atoms were formed by s topping negat ive pions i n  the  

L i 6 ,  L i 7 ,  Be9, B1', B", and C1*. following t a r g e t s :  

obtained f o r  p ion ic  2p-1s n a t u r a l  l i n e  widths were: 

The r e s u l t s  
4- op*2 

6 

7 

9 

10 

11 

1 2  

r ( L i  ) = 0.15 * 0.05 keV 

r ( L i  ) = 0.19 f 0.05 keV 

r(Be ) = 0.58 f 0.05 keV 

I'(B ) = 1.68 * 0.12 keV 

T ( B  ) = 1.72 * 0.15 keV 

r(C ) = 3.25 * 0.15 keV 

Theore t ica l  values f o r  t he  n a t u r a l  l i n e  widths were computed from the  

theory of Ericson and Ericson and found t o  be i n  good agreement with 

the  above measured r e s u l t s .  

1 



11. INTRODUCTION 

1 In 1935, Yukawa introduced a theory of nuc lear  forces  i n  which 

the  foTce between two nucleons was represented by a quant ized f i e l d .  

From t h e  approximate range of nuc lear  fo rces  ( = l o  cm), the  mass o f  

t h e  p a r t i c l e s  represent ing the  quanta of t h i s  f i e l d  was est imated t o  

- 13 

be o f  t h e  
2 Anderson 

t o  be t h e  
- 

order  of  200 e lec t ron  masses. In  1938, Neddermeyer and 

observed a p a r t i c l e  from cosmic r a d i a t i o n  which was thought 

Yukawa p a r t i c l e ;  however, a subsequent experiment by Conversi 

5 e t . a l . ,  

t o  account f o r  t he  s t rong  nuc lear  forces .  

p a r t i c l e  has s ince  become known as the  muon. 

discovered i n  1947 by Powell e t .a l . ,4  i n  a series of experiments i n  

showed t h a t  t h i s  p a r t i c l e  i n t e r a c t e d  too  weakly with matter 

This weakly i n t e r a c t i n g  

The Yukawa p a r t i c l e  was 

which s e n s i t i v e  emulsion p l a t e s  were exposed t o  cosmic r ad ia t ion .  

p a r t i c l e ,  now c a l l e d  t h e  pion, was observed t o  produce 'gs tars"  a t  t he  

end of i t s  emulsion t r ack  which were i n t e r p r e t e d  as r e s u l t i n g  from 

nuclear  e x c i t a t i o n  following t h e  nuc lear  capture  of a negat ive pion. 

. With the  advent of p a r t i c l e  acce le ra to r s ,  pions were produced 

a r t i f i c i a l l y  i n  nucleon-nucleon c o l l i s i o n s ,  confirming t h e  bas i c  

concept t h a t  pions were the  quanta of  t h e  nuclear  fo rce  f i e l d .  

This 

The poss ib l e  ex is tence  o f  mesic atoms was f i r s t  suggested by 

Fermi  e t . a l .  ,5 i n  a paper descr ibing t h e  i n t e r a c t i o n  of slow mesons 

w i t h  mat ter .  A negat ive meson t r ave l ing  through condensed matter was 

2 
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assumed to lose its kinetic energy through ionizing collisions with 

atomic electrons until it was captured at rest by an atom into 

a Bohr orbit. Subsequent transitions between Bohr levels were then 

made by the meson to levels of low principal quantum number from which 

nuclear capture occurred. Fermi and Teller calculated that the time 6 

required for a slow (2000 eV) negative meson to reach the atomic 
- 13 K-shell was of the order of 10 sec. For the pion, the mean life 

against free decay is about 2 . 6  X sec which is long compared with 

the time estimated for the formation of a pionic atom and the subsequent 

cascade to the K-shell. In accordance with these theoretical consider- 

ations, a negative pion stopping in condensed matter should form a 

pionic atom and reach the ground state before decaying. This postulate 

could be confirmed experimentally by observing the characteristic X-rays 

emitted during the cascade process. Conclusive evidence of the formation 

of pionic atoms was first obtained by Camac et.al. ,7 who stopped negative 

pions in graphite and studied the radiation emitted with a scintillation 

counter. 

to the pionic KCL line in carbon. 

A peak was observed at approximately 100 keV which corresponded 
/ 

Subsequent interest in pionic atoms has resulted from the 

possibility of obtaining specific information about the pion-nucleus 

strong interaction by studying pionic transitions. 

implicit in the work of Wheeler8 who suggested that the nature of the 

This idea was 

- weak muon-nucleus interaction could be investigated experimentally with 

muonic atoms. The main properties of a pionic atom are given by the 

Bohr equations for the energy, radius, and velocity corresponding to 

principal quantum number n: 
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E, = - (rn,/Z) (Zac/n ) 

rn = (G/m,e ) (n2/Z) 

V, = Za /n  

Several  conclusions are immediately obvious from these  equat ions:  

1. the  r a d i i  of  the  p ion ic  Bohr o r b i t s  are smal le r  than 

those of  t he  corresponding e l e c t r o n i c  o r b i t s  by t h e  

r a t i o  m /me = 273.  

the  t r a n s i t i o n  energies  f o r  t h e  p ion ic  atom are l a r g e r  

than those of t he  corresponding e l e c t r o n i c  atom by a 

f a c t o r  of approximately 273. 

IT 

2. 

3 .  s ince  t h e  ve loc i ty  i s  independent of  mass, one can 

expect r e l a t i v i s t i c  e f f e c t s  t o  be no more important 

f o r  the  p ion ic  atom than €or the  e l e c t r o n i c  atom. 

As a consequence of t he  small Bohr r a d i i  f o r  p ion ic  atoms, most of  t he  

cascade process takes p lace  within the  e l ec t ron  s h e l l s  and, t he re fo re ,  

t he  p ion ic  atom may be t r e a t e d  as a hydrogen-like atom t o  a very good 

approximation. For example, t he  f~ = 17 l e v e l  of  t he  p ion ic  atom has 

a Bohr rad ius  which corresponds t o  t h a t  of the  K-electron. Therefore,  

the  energy l eve l s  corresponding t o  a low p r i n c i p a l  quantum number can 

be ca l cu la t ed  t o  high accuracy and can serve  as a b a s i s  f o r  studying 

the  pion-nucleus in t e rac t ion .  The major cor rec t ions  t o  the  energy 

l eve l s  pred ic ted  by simple Bohr theory a re :  

1. f i n i t e  nuclear  s i z e  - accounted f o r  by solving t h e  wave 

equation assuming a uniform charge d i s t r i b u t i o n  f o r  t he  

nucleus;  i . e . ,  - 
(r>R) = -Ze2/r 

( r < R )  =( Ze2/2R)[-3 + ( r / R ) 2  1, 
vcolJ1 

vcoul 
where R is the  nuc lear  rad ius .  
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2 .  relativistic corrections - taken into account by using 
the Klein-Gordon wave equation. For a point nucleus, 

the energy levels are: 

where higher order terms have been neglected. 

vacuum polarization correction - corrections obtained from 
quantum electrodynamics. 

3. 
9 

4. Pion-nucleus interaction - specific form not known. 

All effects on pionic energy levels, except the last, are known and 

can be calculated. 

yield information about the pion-nucleus interaction, which is related 

Thus, measurements of  pionic transitions can 

directly to the more basic pion-nucleon interaction. 

The strong interaction between the pion and nucleus is expected 

to manifest itself in a pionic atom through three effects: 

1. broadening of energy levels due to rapid absorption 

of the pion by the nucleus. 

2. shift of energy levels due to pion-nucleus interaction. 

3 .  decrease in intensity of pionic X-rays vs Z due to 

nuclear capture of the pion before completion of the 

cascade to the ground state. 

10,13. These effects were first studied experimentally by DeBenedetti - et.al., 

West and Bradley, 12y13 Camac et.al.,14 and Stearns and Stearns” by means 

of proportional counters, scintillation counters, and critical absorber 
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techniques.  

doing a t h e o r e t i c a l  s tudy o f  t h e  pion-nucleus i n t e r a c t i o n .  

a r t i c l e  covering a l l  aspec ts  of t h i s  work was w r i t t e n  by West18 i n  

1957. 

during t h i s  -period were l imi ted  by t h e  low pion beam i n t e n s i t i e s  and 

A t  t he  same time, Brueckner16 and Deser e t . a l . ,  l7 were 

A review 

The amount of  information and p rec i s ion  of  the  r e s u l t s  obtained 

the  poor r e so lu t ion  o f  t h e  de t ec to r s .  

advent of both high r e so lu t ion  semi-conductor de t ec to r s  and more 

In  the  p a s t  several years ,  t he  

in tense  pion beams has made poss ib l e  the  extension of  t hese  earlier 

measurements over a wider range of  elements with g r e a t e r  prec is ion .  

In addi t ion ,  t he  recent  t h e o r e t i c a l  work of  Ericson and Ericson 19 

t r e a t s  t h e  low energy pion-nucleus i n t e r a c t i o n  i n  considerably more 

d e t a i l  than e a r l i e r  work and, t he re fo re ,  makes a p r e c i s e  measurement 

of  p ionic  X-rays des i r ab le .  

concerned with the  measurement of  p ion ic  2p-1s l i n e  broadening i n  

The work described i n  t h i s  t h e s i s  was 

low 2 atoms and comparison o f  the  r e s u l t s  with t h e o r e t i c a l  p red ic t ions  

20,21 as  well  as with previous measurements. 

In  a p ionic  atom, the  wave-function-overlap with the  nucleus 

and the  s t rong  pion-nucleus i n t e r a c t i o n  leads t o  very r ap id  absorpt ion 

of pions ,€rom the  1s s t a t e .  If t h e  1s s t a t e  is  assumed t o  be depleted 

exponent ia l ly  with time according t o  e 

s t a t e  o f  d e f i n i t e  energy E 

energies  given by a Lorentzian func t ion:  

, then it  is  not a s t a t i o n a r y  -Wabs 

but has a p r o b a b i l i t y  d i s t r i b u t i o n  of  1s , 
22 

where fluabs = rnat is t h e  FWI-IM of the  d i s t r i b u t i o n .  
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Thus, as a r e s u l t  o f  t h e  rap id  pion absorp t ion  by t h e  nucleus,  t he  1s 

l eve l  i n  a p ion ic  atom is broadened. The n a t u r a l  l i ne  width i s  given 

by rnat and i s  cons i s t en t  with the  unce r t a in ty  p r i n c i p l e .  

mentally,  one measures t h e  2p-1s t r a n s i t i o n  energy, and the re fo re ,  t h e  

observed na tu ra l  l ine  width represents  width cont r ibu t ions  from the  2p 

and the  1s states. 

the  r a d i a t i v e  t r a n s i t i o n  rate t o  t h e  1s state  and i s  neg l ig ib l e  s i n c e ,  

f o r  example, i n  Be9: 

Experi- 

The width con t r ibu t ion  of  t h e  2p s ta te  i s  due t o  

18 

14 

(1s) = 10 / sec  wabs 
w (2p) = 10 / sec  rad 

Therefore,  t he  n a t u r a l  l i n e  width of  t he  2p-1s t r a n s i t i o n  i n  a p ionic  

atom w i l l  y i e l d  d i r e c t l y  the  nuc lear  absorpt ion r a t e  of  pions from the  

1s s t a t e .  

Theoret ical  desc r ip t ions  o f  the process i n  which a negat ive 

pion is absorbed by a complex nucleus a r e  based on concepts introduced 

by Brueckner et.a1.23 i n  1951. 

absorpt ion process i s  the  r e l ease  of the  pion r e s t  mass energy (139 m e V )  

The c h a r a c t e r i s t i c  f ea tu re  of t h e  

i n  the  form of  k i n e t i c  energy of t he  absorbing nucleons. 

i s  assumed t o  involve a t  least two nucleons i n  order  t o  conserve energy 

and momentum. 

forbidden f o r  f r e e  nucleons,  t he  same process f o r  nucleons i n  a complex 

nucleus i s  only quasi-forbidden s ince  t h e  nucleus can provide an ex te rna l  

Absorption 

Although the  one-nucleon process 7 ~ -  + p + n is  s t r i c t l y  

source of momentum through Fermi motion. 

f o r  the  absorpt ion of a zero-energy pion on a r e s t i n g  proton is obtained 

The momentum balance required 
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by the  conservat ion of t o t a l  r e l a t i v i s t i c  energy: 

(mIT + mp)2c4 = pic2 + m2c4 n 
= = 525 MeV/c Pn ITP 

This i s  j u s t  t h e  momentum acquired by the  proton due t o  absorpt ion 

of  t he  pion rest mass energy. 

250 MeV/c, t he  one-nucleon absorpt ion is  s t rong ly  inh ib i t ed .  Thus, a 

negat ive pion i n  nuc lear  mat te r  is  assumed t o  be absorbed by a p a i r  of 

nucleons i n  a process which i s  the  inverse of pion production i n  the  

c o l l i s i o n  of t he  two nucleons; i . e . ,  

Since t h e  Fermi momentum is approximately 

- 
IT-+ p + n + n +  n 

n'+ p +  p + n  + p 

From these  considerat ions,  Brueckner assumed t h a t  t he  absorpt ion 

r a t e  from the  1s s t a t e  of a p ionic  atom was propor t iona l  t o  t h e  

t r a n s i t i o n  p robab i l i t y  p e r  second f o r  the  r eac t ion  IT- + D -+ n + n ,  - i .e. ,  

where @(o)  = wave funct ion of t he  p ion ic  1s s t a t e  evaluated a t  r = 0, 

ZA = charge f o r  nucleus A, 

K = constant  

was obtained from the  measured c ross  
3 

The deuteron absorpt ion r a t e ,  

s ec t ion  f o r  t h e  r eac t ion  p + p + IT+ + D by the  p r i n c i p l e  of d e t a i l e d  

balance and with the  assumption of charge independence. 

approximate expression was obtained by Brueckner16 f o r  t he  na tu ra l  l i n e  

width (FWHM) of  1s l e v e l s  i n  p ion ic  atoms: 

The following 

r ls  (Brueckner) = ( 2Z2/21 50)EZ (1 1 
where EZ is  the  K-shell binding energy, (mIT/2)(Z~)2. 

The general  t rend  of  t he  measured widthsz4 i s  descr ibed by eq. (1) .  
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An a l t e r n a t i v e  desc r ip t ion  of the  pion-nucleus i n t e r a c t i o n  is 

obtained by means of an o p t i c a l  model p o t e n t i a l ;  i .e . ,  - 

There w i l l  be a complex energy s h i f t  assoc ia ted  with V which reflects 

t h e  pe r tu rba t ion  of  t he  Bohr energy levels due t o  the  pion-nucleus 

i n t e r a c t i o n :  

Etot = E, + AE 

where AE = A E R  - i A E I  

Eo = unperturbed energy 

The time dependence o f  t he  p ion ic  wave func t ion  i s  given by 

-i Etott/?i  -i (E, + aER)t/fi - A E I t / f i  
e = e  * e  

The p r o b a b i l i t y  dens i ty  f o r  f ind ing  t h e  pion i n  a c e r t a i n  s t a t e  a t  

time t is given by t h e  absolu te  square of  t he  wave funct ion.  

- 2 ~ E ~ t / f l  - W  t abs e = e  

Therefore,  t he  imaginary p a r t  of V leads t o  an exponential  decay of 

t h e  system and r e s u l t s  i n  a broadening of the  energy l e v e l  from which 

pion capture  occurs.  

t h e  n a t u r a l  l i n e  width i s  given by: 

In  terms of  t h e  imaginary p a r t  o f  t h e  l e v e l  s h i f t ,  

mat = 2nEI 

Ericson and Ericson” have r ecen t ly  der ived a phenomenological 

o p t i c a l  p o t e n t i a l  descr ib ing  the  pion-nucleus i n t e r a c t i o n  by using a 

mul t ip l e  s c a t t e r i n g  approach. 

determined from the  amplitudes f o r  wN s c a t t e r i n g  and f o r  IT production 

The parameters i n  the  p o t e n t i a l  were 
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i n  NN c o l l i s i o n s .  The technique used t o  ob ta in  the  p o t e n t i a l  is  

c lose ly  connected t o  t h e  s o l u t i o n  of t h e  wave equation by means of 

t he  GreenPs func t ion  G(r,r'). The formal s o l u t i o n  t o  t h e  wave 

equation 

( v 2  + K2)\y(r) = U(r)lu(r) 

where K2 = 2rnE/fi2 

U(r) = 2mV(r) / 'h2 

can ue w r i t t e n  as 

Y(r) = Y,(r) + ~G(P,P')U(r')Y(r')dr'  (2) 

where the  Green's func t ion  is  the  s o l u t i o n  of  t he  wave equat ion with 

a d e l t a  func t ion  source 

( v 2  + K2)G(r,r') = 6(r-r ' ) .  

and 

( 0 2  + K2)wo = 0. 

In  the  mul t ip le  s c a t t e r i n g  approach of  t h e  Er icsons ' ,  the  so lu t ion  f o r  

t h e  t o t a l  wave funct ion of t he  pion-nucleus system is  expressed i n  the  

form of an i n t e g r a l  equation similar t o  equation (2)  which y i e l d s  the  

o p t i c a l  p o t e n t i a l  d i r e c t l y .  The pion-nucleus i n t e r a c t i o n  is  viewed as 

a complicated process i n  which the  pion undergoes mul t ip le  e l a s t i c  and 

i n e l a s t i c  s c a t t e r i n g  with nucleons. The assumption is  made t h a t  bound 

nucleons s c a t t e r  pions i n  t h e  same way as f r e e  nucleons,  with the  

exceptic.1 of kinematical  f a c t o r s ,  and t h a t  s and p wave pion-nucleon 

s c a t t e r i n g  a r e  s u f f i c i e n t  €or a desc r ip t ion  of t he  i n t e r a c t i o n .  The 

t o t a l  wave func t ion  Y f o r  t h e  pion-nucleon system i s  w r i t t e n  as the  sum 

of  t h e  inc ident  wave I and the  s c a t t e r e d  wave emerging from each of 
0 
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the  s c a t t e r e r s  i n  the  nucleus.  The s c a t t e r e d  wave a t  t h e  ith nucleon 

is  propor t iona l  t o  t h e  s c a t t e r i n g  amplitude fi and the  wave Yi inc ident  

on the  ith nucleon; - i . e . ,  

i ( r )  = v0(r) + ( r , r ' ) f i ( r ' )  y i ( r ' )  d r '  

By analogous reasoning, a similar expression can be wr i t ten  f o r  Yi 

where t h e  sum is over index j with i # j. I n  t h i s  manner, t he  t o t a l  

wave funct ion can be constructed through an expansion i n  terms of  

c o r r e l a t i o n  func t ions  which descr ibe t h e  degree of  c o r r e l a t i o n  among 

th'e nucleons p a r t i c i p a t i n g  i n  the  mul t ip le  s c a t t e r i n g .  In  p r a c t i c e ,  

the  expansion is  terminated a f t e r  a few terms and solved exac t ly .  

Termination a t  t he  e a r l i e s t  s t age  represents  an uncorrelated assembly 

of  nucleons i n  which a mul t ip le  scatter event proceeds without 

knowledge of a nearby s c a t t e r e r ;  terminat ion a t  t he  next s t e p  of p a i r  

co r re l a t ions  includes the  e f f e c t s  of a neighboring s c a t t e r e r  i n  a way 

determined e x p l i c i t l y  by the  form of the  c o r r e l a t i o n  funct ion.  The 

Ericsons terminated t h e  expansion a t  t h i s  s t e p  using a short-range 

p a i r  c o r r e l a t i o n  funct ion and obtained the  following p o t e n t i a l  f o r  

e l a s t i c  s c a t t e r i n g  only: 

-a2 4 1 ~ c ~ v ~ p ( r ) v  
2m r b o P ( r l  - 1 + T c o P ( r )  4 V ( r )  = - 

where the  s c a t t e r i n g  amplitude was given by 

f i ( r )  = [bo + coK*K']p(r), with 
+ +  

bo = l i n e a r  combination of s wave s c a t t e r i n g  lengths  

c0 = l i n e a r  combination of p wave s c a t t e r i n g  lengths  

it = i n i t i a l  pion momentum 

Itt = f i n a l  pion momentum 

$ ( r )  = nucleon dens i ty  
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This p o t e n t i a l  is i n  the  form of t h e  v e l o c i t y  dependent p o t e n t i a l  

o r i g i n a l l y  der ived by Kissl inger .  25 An added feature is t h e  non-l inear  

dependence of  t h e  dens i ty  through t h e  factor [I f (4/3)~c~p(r)]-? This 

f a c t o r  enters as a r e s u l t  o f  including pair c o r r e l a t i o n s  i n  t h e  mul t ip le  

s c a t t e r i n g  formalism and has a c l a s s i c a l  analogue i n  t h e  s c a t t e r i n g  of  

electromagnetic waves i n  dense media - t h e  so-ca l led  Lorentz-Lorenz 

e f f e c t .  The inc lus ion  of s p i n  and i sosp in  terms i n  t h e  s c a t t e r i n g  

amplitude does not  a f f e c t  t he  b a s i c  s t r u c t u r e  o f  t h e  p o t e n t i a l  bu t  

e s s e n t i a l l y  modifies t he  c o e f f i c i e n t s  b and Co. The v e l o c i t y  

dependent, o r  non-local,  term can be i n t e r p r e t e d  as an e f f e c t i v e  mass 

tern s ince  it can be included i n  the  V2 opera tor  of the  wave equat ion;  

0 

i . e . ,  - 

l + a -  1 
m where - - 

rn ( e f f )  
71 71 

VL = l o c a l  p a r t  of p o t e n t i a l  

The i n e l a s t i c  absorpt ive i n t e r a c t i o n  i s  included by assuming t h a t  

absorpt ion takes  p lace  on two nucleons. 

a s  an add i t iona l  type of s c a t t e r e r  i n  the  mul t ip le  s c a t t e r i n g  formalism 

with p 2 ( r )  being used as the  two-nucleon dens i ty .  

Two nucleons a r e  then t r e a t e d  

Two-nucleon e l a s t i c  

s c a t t e r i n g  i s  a l s o  permit ted s ince  t h e  absorp t ive  i n t e r a c t i o n  may 

induce it, as  pointed out  by Brueckner.16 

t o  two-nucleon i n t e r a c t i o n s  has a form s i m i l a r  t o  t h a t  derived fo r  

one-nucleon s c a t t e r i n g  with the  except ion t h a t  p2( r) rep laces  P (r )  and 

the  c o e f f i c i e n t s  a r e  now complex. 

The r e s u l t i n g  p o t e n t i a l  due 

An a n a l y t i c  expression f o r  t he  complex 



13 

energy s h i f t  due t o  the  o p t i c a l  model p o t e n t i a l  has been obtained 

by M. Ericson 26 . The o p t i c a l  p o t e n t i a l  is represented i n  its 

s implest  form i n  terms of  fou r  dominating parameters which descr ibe  

t h e  mean e f f e c t  of the pion-nucleon interaction. The l o c a l  p a r t  is  

represented by 

VL = pp + i v p 2  

and the  non-local p a r t  by the  e f f e c t i v e  mass term 

CL = ap + ibp2 , 
where the  imaginary parameters descr ibe  the  absorpt ion.  

p ( r )  i s  assumed t o  be constant  i n s i d e  the  nucleus of rad ius  R and 

the  complex energy s h i f t  is obtained by solving the  Schrodinger 

equation 

The dens i ty  

- Ti2 0.(1 + ~ ) V Y  -I- (E - Vtot)tY = 0 
71 

2m 

where 1 + a 1 m i  - =  
mn 

Vto t ( r>R)  = - Z e 2 / r  

( r < R )  =(Ze2/2R)[-3 + ( r / R ) 2 ]  -I- VL - " t o t  
which y i e l d s  t h e  following expression f o r  the  complex energy s h i f t :  

3 

( 3 )  (2a+3)  ( 2 a + 5 )  
A E  = 

all 2mnVLR2 
1 + -  + 2KoR11 + a ( l  - s , ~ ) / Z )  + +. . * 

2 Q+l fi2( 2k+1) ( 2 a + 3 )  

where E = - ( m  /2)(Zac/n)2 
0 n 

= -2mnEo/fi* 

Q = o r b i t a l  angular  momentum quantum number 

= Kronecker d e l t a  
LO 
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Although the shift is given in terms of only four optical-model 

parameters representing the mean effect of the interaction, the 

formal theory” is developed in such a manner that corrections from 

various terms can be included directly into these four parameters. 

These corrections will be discussed in section VI where experimental 

and theoretical values of the natural line widths are compared. 

In order to test more explicitly the hypothesis that absorption 

occurs on pairs of nucleons, M. EricsonZ7 has also calculated an 

expression for the pion absorption probability in a complex nucleus by 

a different method - that based on a generalized deuteron model. This 

calculation is similar to the earlier one of Brueckner’s16 but is more 

detailed and presumably more accurate since the experimental cross 

sections for (1r,2N) interactions are now better known. Pion absorption 

by a pair of  nucleons is assumed to occur by means of the following 

basic reactions : 

TI- f p t n -f n t n 

n - f  p f  p - z n  f p 

The two absorbing nucleons are assumed to be in a relative S state 

because of the short range o f  the interaction. 

is assumed to be absorbed from an s o r  p state relative to the two 

nucleons. The initial and final states available to the pion-two 

nucleon system are determined by invoking the Pauli exclusion principle 

and the conservation of total angular momentum and parity. 

absorption probability associated with each transition can be obtained 

from the corresponding cross section for pion production in 2N collisions 

In addition, the pion 

The 
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by using t h e  p r inc ip l e s  of d e t a i l e d  balance and charge independence. 

The t r a n s i t i o n  states and corresponding cross  sec t ions  are l i s t e d  

be low : 

Absorbing S t a t e  of S t a t e  of  I so top ic  Spin Production 
Pair  I n i t i a l  P a i r  F ina l  Pair  Change Cross Sect ion  

O 0 1  T=O -+ T=l 

T=l -+ T=l 

T=l -+ T=l 0 

1 1 Pn 351 3P1, So' or D* 

Pn lS0  3p0 

PP lS0 3p0 

PP lS0 

11 

10 3S1 o r  'D1 T=l  -+ T=O U 

The capture  p r o b a b i l i t y  i n  a nucleus corresponding t o  each t r a n s i t i o n  

i s  obtained by averaging the  two-nucleon cross  s e c t i o n  over t he  i n t e r -  

ac t ion  volume of the  nucleus and approximating the  two-nucleon dens i ty  

with the  square of t h e  one nucleon dens i ty .  The t o t a l  capture  rate i s  

then obtained by adding toge ther  t h e  r a t e s  assoc ia ted  with each 

t r a n s i t i o n  and r e s u l t s  i n  the  following expression for the  na tu ra l  l i n e  

width (fi = c = 1 ) :  

t = 2 u l p 2 1 ~ ] 2 d ~  f (b/m B 

where p = one-nucleon dens i ty  

Y = pion wave func t ion  

v = 165 f 20MeV F 6 

b = 17 f 4 F6 

(4) 
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A d i r e c t  comparison between the  experimental l i n e  widths and 

the  t h e o r e t i c a l  p red ic t ions  given i n  t h i s  s e c t i o n  tests the  v a l i d i t y  

of  

1. 

2 .  

t h e  two-nucleon absorpt ion hypothesis and 

the  o p t i c a l  model p o t e n t i a l  based on mul t ip le  scattering 

theory.  

13 Before 1966, no l e v e l  width measurement o the r  than  one f o r  Be9 (West ) 

ex i s t ed  f o r  comparison with theory.  

t he  estimate given by Brueckner16 but  disagrees  with the  p red ic t ions  of 

Ericson and Ericsonl’ by a f a c t o r  of two. 

the  1s l eve l  widths of low Z p ion ic  atoms have been measured t o  approxi- 

mately t h e  same p rec i s ion  as the  e a r l i e r  Be9 r e s u l t .  Although the re  is 

general  agreement between the  experimental r e s u l t s ,  t he  r e l a t i v e l y  l a rge  

This r e s u l t  is  i n  agreement with 

20,21 In more recent  experiments, 

e r r o r s  make a d e t a i l e d  comparison with theory d i f f i c u l t .  

Because of  the  need f o r  g r e a t e r  p rec i s ion ,  an experimental 

program was undertaken t o  measure na tu ra l  l i n e  widths using higher  

r e so lu t ion  spectrometers.  

l i t h ium-dr i f t ed  s i l i c o n  and germanium de tec to r s  with cooled front-end 

These spectrometers ,  which cons is ted  of 

e l e c t r o n i c s ,  represented approximately a f a c t o r  of two improvement i n  

reso lu t ion .  Measurements a r e  reported here  on the  p ion ic  1s na tu ra l  
l i n e  widths i n  L i 6 ,  ti’, Be9, B l 0 ,  B”, and C 1 2  . 



111. HIGH RESOLUTION SPECTROMETERS 

The development of the Si(Li) and Ge(Li) spectrometers 

constituted a major portion of the experimental program and, there- 

fore, will be described separately in this section. 

will include a discussion of the ancillary equipment used in this 

experiment. 

The next section 

As mentioned in the previous section, high resolution is 

necessary in order to make precise line width measurements. The types 

of radiation detectors which are generally available for such measure- 

ments may be classified as solid-state or gas-filled. 

detectors consist of the scintillation types (e.g., sodium iodide and 

cesium iodide) and those which are semi-conductors (e.g., - germanium 
and silicon). 

counters. 

Solid-state 

Gas-filled detectors include ion chambers and proportional 

In all of these detectors, energy is converted into charge 

by the formation of "ion-pairs" when incident radiation is absorbed. 

An analysis of the process of ion-pair formation shows that semi- 

conductor detectors are capable of the highest resolution. 

will be discussed next, after a brief description is given of semi- 

conductor detectors. 

This point 

A.  Semi-Conductor Detectors 

The basic semi-conductor radiation detector 28 is 

fabricated from germanium or silicon to form a diode structure whose 

17 
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junction becomes the sensitive region of the detector. 

is a space charge or intrinsic region of very high resistance. 

reverse bias voltage applied to the electrodes on opposite sides of 

the junction produces an electric field across the intrinsic region. 

The junction 

A 

When incident radiation is absorbed in the sensitive volume of the 

detector, electrons are raised t o  the conduction band and holes are 

left in the valence band, These electrons and holes, constituting 
J 

"ion-pairs;' are then collected by the electrodes under the action of 

the electric field. 

circuit, resulting in the conversion of energy into an electrical 

signal. 

In this manner, charge is induced into an external 

Detectors with large sensitive volumes are made by an ion-drift 

technique 

a junction which can be greater than 1 cm deep. 

lithium ions (donor impurity) are typically made to drift through p-type 

germanium or silicon, originally containing a uniform distribution of 

acceptor centers, under the action of reverse voltage and controlled 

which compensates the impurities in a semi-conductor forming 

In this process, 

temperature. Commercial Ge(Li) and Si(Li) detectors so manufactured 

were used for this experiment. Fig. 1 illustrates this type of diode 

structure. These detectors must be operated at liquid nitrogen (LN) 

temperature in order to reduce the reverse leakage current which 

introduces noise and, in the case of germanium, to prevent the lithium 

from un-drifting. 

Ge(Li) and Si(Li) detectors are capable of significantly better 

resolution than the other detectors mentioned previously. 

becomes evident from a calculation of the energy spread (FWHM) due to 

This fact 
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statistical fluctuations in the number of ion-pairs produced when 

energy E is absorbed in a detec or .  

of energy dissipated in a detector are assumed t o  be governed by 

Gaussian statistics (or Poisson statistics for a large number of events), 

then the energy spread is given by: 

If the fluctuations in the amoun 

FWHM(keV) = 2.35 uE , 

where u 

energy deposited in the detector by an incident particle with energy 

E .  Since the number of ion-pairs produced is the quantity which 

undergoes statistical fluctuations, uE must be obtained by calculating 

the standard deviation on the number of ion-pairs and then converting 

this to an energy deviation. 

an ion-pair is E and energy E is absorbed in a detector, then the 

average number of ion-pairs produced is E / € .  

on the number of ion-pairs is then 

terms of energy becomes . Therefore, the contribution by the 

detector to the energy spread caused by the statistics of ion-pair 

formation is given by: 

represents the standard deviation in keV on the amount of E 

If the average energy required to produce 

The standard deviation 

and the standard deviation in 

FWHM(keV) = 2.35 ( 5 )  

- 3  For germanium and silicon, the value of E is 2 . 9  X 10 and 3.6 X 

keV/ion-pair, respectively. For gas counters, E is approximately 

30 X keV/ion-pair and increases to about 500 x keV/ion-pair 

for scintillation detectors, The spread in energy as calculated from 

eq. (5) with E = 100 keV yields 1.3 keV for germanium, 4.1 keV for a 

proportional counter, and 16.8 keV for a scintillation detector. In 
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actual practice, germanium detector contributions to resolution at an 

energy of 100 keV have been measured to be as low as 0 . 5  keV which 

is much smaller than that expected from Poisson statistics alone. 

The explanation for this discrepancy comes from a study originally 

made by Fano2’and relates to the statistical treatment of the process 

of ion-pair formation in detectors. If one calculates, for example, 

the variance on the number of ion-pairs formed in a finite detector 

with the restriction that the energy loss has a fixed value (cor- 

responding in practice to the photopeak energy), then a value is 

obtained which is two to three times smaller than that predicted by 

Poisson statistics without any restrictions. Therefore, a more 

accurate expression for the detector contribution to energy spread 

(FWHM) is 2.35 &% , where F (Fano factor) is less than one. 

Although semi-conductor detectors are capable of superior 

resolution, no mechanism exists for charge multiplication such as 

the multiplication process in proportional counters or the phototubes 

used with scintillation detectors. As a result, very small signals 

are generated which require a very low noise first amplification 

stage in order to utilize fully the resolution capability of semi- 

conductor detectors. In fact, the advent of semi-conductor radiation 

detectors has required the re-evaluation of all elements of a pulse 

height analysis system. 30,31 

B. Cooled FET Preamplifier 

A typical high resolution spectrometer used for precise 

energy measurements consists of the following elements: 
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1. A high quality semi-conductor detector. 

2. A low noise preamplifier. 

3 .  A low noise mainline amplifier with pulse 

shaping flexibility for maximizing the signal 

to noise ratio. 

4 .  A multichannel analyzer with good linearity and 

stability characteristics and a sufficient 

number of channels (>lo00 for most applications). 

The preamplifier noise is generally the limiting factor in obtaining 

high resolution. 

transistor (FET) as the first amplifying element, At low energies 

(<lo0 keV), the contribution 

best commercial FET preamplifiers is typically a factor of three or 

more than the detector contribution. 

2N3823 manufactured by Texas Instruments, Inc. The noise performance 

of FET preamplifiers has been improved further 

selected 2N3823 in different first-stage configurations and cooling 

the FET to near LN temperatures. 

cryogenic preamplifiers are typically two to three times lower than 

the standard commercial FET preamplifiers having the same type FET. 

Thus, a commercial FET preamplifier was selected and modified for 

lower noise along the lines set forth by others. The remainder 

of this section deals with the development of this cryogenic pre- 

amplifier and the associated Si(Li) and Ge(Li) spectrometers. 

The lowest noise preamplifiers use a field effect 

to the total energy spread from the 

The FET generally used is a 

32-34 by using a 

The noise figures obtained for these 

34 

It will be useful to discuss, first, some general aspects of 

preamplifier circuits normally used with semi-conductor detectors. 
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Attention will be confined, for the most part, to the first amplifying 

stage since the signal to noise ratio (S/N) is essentially determined 

at that point. 

tions are used with semi-conductor detectors ?’ 
Two general types of preamplifier-circuit configura- 

These circuit 

configurations, shown in Fig. 2a and 2b, are designated as voltage 

sensitive and charge sensitive, respectively. The active input element 

can represent a vacuum tube or an FET for the purpose of this 

discussion. Co and Ro represent the total input capacitance and 

resistance, respectively, including the detector capacitance and 

leakage resistance. In the voltage sensitive configuration, the 

output voltage is proportional to the input voltage. 

of this circuit are the possibility of a faster rise time and a slightly 

higher S/N than the charge sensitive circuit. 

that the output signal height depends upon the detector capacitance 

(through Co) and the pulse decay time depends upon the detector leakage 

resistance (through R o ) .  

parameters will lead to unreliable operation. 

The advantages 

The disadvantages are 

Therefore, any variation of these detector 

In contrast, the output 

voltage in the charge sensitive configuration is proportional to the 

charge introduced at the input of the preamplifier. 

Q/Cf is the output voltage, where C 

is essentially independent of the detector capacitance over a broad 

range of operating conditions. 

the charge sensitive configuration is generally perferred and is the 

one used by most commercial manufacturers. 

Specifically, 

is the feedback capacitance and f 

As a result of the above considerations, 

The commercial preamplifier which was selected for the cryogenic 

system used in this experiment was a Tennelee model TC-130 FET 
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preamplifier. 

circuit in order to reduce its noise contribution were based primarily 

on the work of Elad and Nakamura. 

relatively straight-forward, the successful operation of the low- 

noise circuit with a semi-conductor detector places stringent 

requirements on certain properties of the detector. 

spectrometers such as these must usually be custom made. 

The modifications which were made to the basic TC-130 

Although these modifications are 

As a result, 

The typical 

sources of noise encountered in FET preamplifiers will be discussed 

next. The procedure for minimizing this noise and the requirements 

placed on the detector in the process will be outlined. 

Fig. 3 is a schematic of a typical room-temperature FET pre- 

amplifier used with a cooled semi-conductor detector and will serve 

to illusteate the various sources of noise, as well as the basic 

operation of the FET first-stage. 

detector, a quantity of charge is released which flows for albrief 

When radiation is absorbed in the 

duration (depending on the collection time of the detector) and 

constitutes the input signal to the preamplifier in the form of a 

current pulse. 

step function whose decay time is determined by the product R C 

The amplitude of the resulting voltage pulse is proportional to the 

energy deposited in the detector." 

of the order of 10 

the FET bias (gate-source voltage). 

highest S/N is near zero volts36 and is determined in this type of 

The current pulse is integrated to approximate a 

G F' 

The gate resistor RG is generally 
9 

ohms and serves the additional purpose of fixing 

The optimum FET bias for the 

*The instantaneous amplitude of the current pulse is not proportional 
to the energy deposited in the detector; it is the total charge re- 
leased or the integral of the current pulse which is proportional to 
the energy. 
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circuit by R which holds the gate lead near ground potential. G 
The sources of noise may be categorized as follows: 

1. intrinsic S/N of the FET 

2. 

3. 

thermal noise of RG and RL 

dependence of S/N on input capacitance. 

Selected FET’s can give considerably better S/N than off-the-shelf 

units. Selected 2N3823’s have been obtained from Texas Instruments 

(yields are typically 1 in 1000) under selection number SF3914, which 

are approximately 50% better than the average. An additional 30% 

improvement in the S/N can be obtained by cooling an FET to the optimum 

temperature. 

resistor has been given by Smith and Kline3%n terms of an equivalent 

noise current and is proportional to TIR G 

temperature. This shows that large values of gate resistance result 

in low noise, a fact which has been verified experimentally in this 

laboratory using values for R which ranged from 10 to 10 ohms. 

Thus, by using large values of gate resistance, one can expect to reduce 

the noise contribution of the preamplifier. 

due to input capacitance occurs because the signal generated by the 

detector is inversely proportional to the input capacitance. 

the noise contribution of a preamplifier is usually stated in terms of 

the noise at zero external capacitance and the slope of the noise vs in- 

An expression for the noise contribution of the gate 

where T is the absolute 

8 1 1  
G 

A degradation in the S/N 

Therefore, 

put capacitance. In addition to the detector capacitance, the stray 

capacitance of the front-end components and associated wiring constitutes 

a source of noise. Therefore, the highest resolution is obtained by 

using a low capacitance detector and a short electrical connection from 
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the detector to the FET. The stray capacitance of the input connection 

can constitute a major fraction of the total input capacitance since 

typical values for detector capacitance are low, ranging from 2 to 50 

picofarads. 

The desire to minimize the sources of noise discussed above 

leads logically to the front-end configuration shown in Fig. 4d. 

configuration uses a selected FET (selection #SF3914) which is placed 

This 

inside the detector cryostat and cooled to the optimum temperature for 

the highest S/N. 

and alwayg occurs slightly above the temperature of LN. 

noise of resistors R 

been eliminated. 

been minimized by DC coupling the detector to the FET and mounting the 

The optimum FET temperature is determined empirically 

The thermal 

and RL, as well as their stray capacitance, has G 

The stray capacitance of the remaining connecthis ha5 

two as close to each other as possible. 

requires that the detector be isolated from ground. 

DC coupling the detector 

The successful 

operation of this configuration requires that the reverse leakage 

current of the detector be very low in order that the FET be biased 

properly. 

by the voltage drop across the gate-source junction and is developed 

by the detector leakage current and t h e  gate-to-source DC impedance. 

Detector leakage currents range in value from 10- to amperes 

and the gate-source resistance, in the absence of a gate resistor, is 

just the FET junction impedance which is approximately 10 

ohms. Therefore, in order to maintain the optimum FET bias of near 

zero volts (usually less than 1 volt), the detector leakage current 

should be in the neighborhood of 10-l' ampere.s. 

can be tolerated by shunting the gate-source junction with a resistor 

In the DC coupled configuration, the FET bias is determined 

12 

11 13 to 10 

Higher leakage current 
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of the appropriate value; however, this step increases the noise 

contribution of the preamplifier. 

Three first-stage configurations, in addition to the standard 

TC-130 first stage, were studied. Schematics of these circuits are 

shown in Fig. 4a-d, and Table I summarizes the results of noise 

measurements for each. The noise contribution of the TC-130 for 

each front-end configuration was measured for zero external capacitance 

at room temperature, and with the FET cooled to the optimum tempera- 

ture. 

pairs was calculated from: 

The noise level in terms of an equivalent number of rms ion- 

x v  X C T  

1.6 x 10-l~ x vout 
'noise in ion pairs 

- - 
Nrms 

where : 

= peak amplitude (volts) of the pulse generator into 100 ohms 

impedance*, 
'in 

= rms noise output (volts) of shaping amplifier with 'noise 

Vout 

- pulser disconnected, 

= peak amplitude (volts) at the output of the shaping amplifier, 

CT = test capacitance (farads), 

1.6 X 1O-l' = electronic charge in coulombs 

The conversion from ion-pairs to keV (FWHM) is made with the following 

expression: 

FWHM(keV) = 2.35 Nms 

where : 

E = 2.94 x keV/ion-pair 
3 

E = 3.61 x 10- keV/ion-pair 

E 

fop germanium and 

for silicon. 

*The TC-130 test input is terminated into 100 ohms. 
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A Berkeley Nucleonics Co. pulse generator, Model RP-1, was used to 

deposit charge on a 0.5 pF test capacitor at the preamplifier input 

and the shaping amplifier was a Tennelec TC-200. 

measurements, single differentiation was used with equal RC inte- 

grating and differentiating times constants of 3.2 psec. Vnoise was 
measured with a Hewlett-Packard 3400A rms voltmeter. The results of 

For all noise 

these noise measurements and the mechanical details of the cryogenic 

preamplifier are discussed in a recent publication. 37 

C. Ge(Li) and Si(Li) Spectrometers 

Ge(Li) and Si(Li) spectrometers were constructed using 

the low noise preamplifier configuration of Fig. 4d. The Ge(Li) 

detector'was a planar device, 3.5 cm 

RCA Ltd., Montreal, Canada. It was permanently encapsulated in a soft 

steel case 0.020 inch thick and could be easily transferred in and out 

of a cryostat without contaminating the detector surface. The leakage 

current of the detector was very low (less than 

volts bias) which permitted it t o  be DC coupled to the lowest noise 

preamplifier configuration (Fig. 4d). The silicon detector was 

2 x 5 mm deep, purchased from 

amperes at 800 

2 80 mm 

as a selected detector, Model W80-3AA. 

detector was also very low and measured t o  be less than 10 

at 400 volts bias. 

detectors were approximately 3 pF and 12 pF, respectively. 

X 3 mm deep and purchased from Technical Measurement Corporation 

The leakage current of t h i s  
-11 amperes 

The capacitances of the silicon and germanium 

The DC coupled configuration requires that the detector bias be 

changed with care. 

variation of voltage is transferred by the detector capacitance to the 

When the detector bias is changed, the momentary 
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ga te  lead of t h e  FET. This vo l tage  surge can be e i t h e r  p o s i t i v e  o r  

negat ive depending on whether t h e  b i a s  i s  p o s i t i v e  o r  nega t ive  and t h e  

change i s  increasing o r  decreasing. The e f f e c t s  of a vol tage  surge 

a t  t he  input  can be understood i n  terms of t h e  diode na ture  of  t h e  

FET gate-source junc t ion  i n  which the  source i s  i d e n t i f i e d  with t h e  

cathode of a diode s t r u c t u r e .  

The e f f e c t s  of a b i a s  change f o r  t h e  TC-130 preampl i f ie r  i n  t h e  

DC coupled conf igura t ion  are manifested i n  two d i s t i n c t  ways. If t h e  

vol tage  surge i s  p o s i t i v e ,  t he  FET can discharge r ap id ly  with no 

harmful effect even though p a r a s i t i c  o s c i l l a t i o n s  are observed while 

a change i n  b i a s  is occurr ing.  

charge r ap id ly  bu i lds  up u n t i l  t h e  FET is  biased o f f ,  with t h e  resu l t  

If t he  vol tage  surge i s  negat ive,  

t h a t  t h e  output s a t u r a t e s  and the  c i r c u i t  becomes paralyzed. The 

accumulated charge can remain f o r  hours due t o  t h e  long RC times 

involved unless  t h e  b i a s  is  changed back t o  t h e  value f o r  which 

s a t u r a t i o n  occurred. The ne t  r e s u l t  i s  t h a t  f o r  a d e t e c t o r  which i s  

used i n  the  p o s i t i v e  high vol tage  conf igura t ion  (PHVC): 

1. Detector high vol tage  can be increased a t  a normal r a t e .  

Momentary o s c i l l a t i o n  w i l l  be observed on an osc i l loscope  

while t he  b i a s  is being increased.  

2.  When the  de t ec to r  b i a s  is  decreased, it must be turned 

down very slowly while observing t h e  output no ise  on an 

osc i l loscope .  The band of no ise  should increase  slowly 

due t o  removal of t h e  de t ec to r  b i a s  and not saturate 

abrupt ly  ind ica t ing  t h a t  b i a s  i s  being removed too  

r ap id ly .  
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The opposi te  is  t r u e  f o r  a d e t e c t o r  which is  used i n  the  negat ive 

- high vol tage  conf igura t ion  (NHVC): 

1 .  The b i a s  must be increased slowly while observing t h a t  

the  noise  decreases  slowly and does not saturate abrupt ly .  

2. The de tec to r  b i a s  can be decreased a t  a normal rate and 

momentary o s c i l l a t i o n s  w i l l  occur while t h e  b i a s  i s  being 

changed. 

For reasons which w i l l  be discussed shor t ly ,  t h e  s i l i c o n  de tec to r  was 

used i n  the  NHVC (Fig.  5) and t h e  germanium detector 'was used i n  t h e  

PHVC (Fig.  6 ) .  The PHVC i s  genera l ly  p re fe r r ed  because it has the  

bes t  count rate capab i l i t y .  

due t o  t h e  very high input  impedance of t h e  FET (10 - 10 ohms) 

which al lows charge t o  bu i ld  up r ap id ly  and t o  change the  FET b i a s  

t o  a value which i s  f a r  from optimum. 

FET b i a s  f o r  low noise  is  near zero v o l t s  and usua l ly  l e s s  than one 

v o l t .  When the  p o s i t i v e  high vol tage  conf igura t ion  is used, t h e  FET 

b i a s  i s  p o s i t i v e  and charge pi le-up tends t o  make it more pos i t i ve .  

A count r a t e  problem i s  encountered 
10 12 

As s t a t e d  e a r l i e r ,  t h e  optimum 

As t h e  instantaneous FET b i a s  approaches about +0.6 v o l t s  due t o  pulse  

pi le-up,  t he  input  impedance begins t o  decrease,  which allows t h e  

accumulated charge t o  discharge quickly.  Thus, f o r  t he  c i r c u i t  of 

Fig. 6, t he  e f f e c t s  of charge p i le -up  which accompanies high count 

r a t e s  are minimized. 

t h i s  count r a t e  e f f e c t  r e s u l t s  from charge pi le-up,  it a l s o  depends 

on the  energy deposi ted i n  the  de t ec to r  and w i l l ,  t herefore ,  be a 

more se r ious  problem f o r  germanium de tec to r s  than f o r  t h e  smaller and 

less e f f i c i e n t  s i l i c o n  de tec to r s  cu r ren t ly  ava i lab le .  

The inverse  argument holds f o r  t h e  NHVC. Since 
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The count rate dependence for the Ge(Li) spectrometer was 

studied for the positive and negative high voltage configurations 

with a Co source. The detector bias for both cases was 700 volts. 

For the NHVC, the preamplifier output saturated for a total rate in 

the detector of about 2500 counts/sec. 

dependence was studied at total rates as high as 10 

no saturation was observed. The resolution (FWHM) of the 1.33 meV line 

was measured for the latter configuration at total rates in the de- 

tector ranging from 500 to 1.3 x 10 These results are 

listed in Table 11. 

a Tennelec Model TC-200 with precision resistors for pole-zero 

cancellation* installed in the differentiating network. 

6 0  

For the PHVC, the count rate 
5 counts/sec and 

4 counts/sec. 

The mainline amplifier for the spectrometer was 

Single 

differentiation was used with equal integrating and differentiating 

time constants of 1.6 psec which gave the best resolution at moderately 

high count rates. 

minimizing the line broadening due to pulse pile-up in the TC-200 and 

, 

The pole-zero cancellation was very effective in 

also in reducing shifts in the peak amplitude at high counting rates. 

Most of the observed peak shift occurred for total rates in the range 

of 8000 to 1.3 x 10 counts/sec. 

1.3 x 10 counts/sec, the peak shift was less than 0.15%. The 

resolution without pole-zero cancellation was about 10 keV at a rate 

of 8000 counts/sec. 

4 Over the total range of 500 to 
4 

At rates of less than 1000 counts/sec, the optimum time 

*Pole-zero cancellation is used t o  minimize the pulse undershoot which 
is caused by differentiation, and thereby improves the count rate 
performance, 
R 

This modification consists of placing a precision resistor 
in parallel with the capacitance of the RC differentiating network 

pz such that R C is equal to the decay time of the preamplifier. 
PZ 
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constants for best resolution were found to be 3.2 psec. Fig. 7 is 

a spectrum of Co60 y-rays taken under these conditions. 

line was measured with a resolution of 2.08 keV (FWHM). 

at low energies is illustrated by the C057 y-ray spectrum shown in 

The 1.33MeV 

The resolution 

Fig. 8. The FWHM of the 122 keV line measured to be 1.02 keV. The 

resolution at low energies was limited by the noise of the preamplifier 

first stage. 

vibrations caused by the bubbling of LN in the detector cryostat. 

This noise was predominantly low frequency (about 3kHz) and is attri- 

buted to the detector encapsulation since the same effect has not 

been observed for bare silicon and germanium detectors, of comparable 

resolution, mounted with the same front-end. This source of noise could 

be temporarily suppressed by removing the LN, and under these conditions 

the 122 keV line was measured with 0.8 keV resolution FWHM. The noise 

of the preamplifier at zero external capacitance has been measured to 

be 0.29 keV (germanium equivalent) with a slope of about 0.034 keV/pF. 

A major fraction of this noise resulted from mechanical 

The Si(Li) detector was mounted in the NIiVC. This configuration 

was used because the original development work on the cryogenic pre- 

amplifier was done with the Si(Li) detector using negative high voltage 

and resulted in a very high resolution system with no serious count 

rate problems such as those experienced in the Ge(Li) spectrometer. 

a result, no subsequent attempt was made to use the Si(Li) detector in 

the PHVC, although the system should work satisfactorily in this 

configuration and result in a generally better spectrometer. 

As 

The noise contribution of the preamplifier used with the Si(Li) 

detector was measured to be 0.39 keV (silicon equivalent) at zero 

external capacitance with a slope of about 0.04 keV/pF. The bubbling 
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of LN did not constitute a major source of noise for the Si(Li) 

spectrometer although the spectrometer was sensitive to external noise 

and vibrations. The sensitive nature of the spectrometer can be 

demonstrated by expressing the resolution at low energies in terms 

of an equivalent number of rms charges injected at the input of the 

preamplifier. 

electron-hole pair in silicon is 3 . 6  eV, an rms noise of one electron- 

Since the average energy required to produce an 

hole pair is equivalent to a FWHM contribution of 8.5 eV. 

resolution of 0.5 keV FWHM is equivalent to a total of 59 rms noise 

charges contributed by all elements of the Si(Li) spectrometer. 

Thus a 

The resolution of the Si(Li) spectrometer is illustrated in 

Fig. 9 and 10. 

with 0.54 keV resolution. 

(Fig. 10) was measured with 0.46 keV resolution. Single differentiation 

was used, and the optimum time constants for lowest noise were found 

to be 6.4 psec for the differentiator and 3 . 2  psec for the integrator. 

The 26.36 keV line of Am241 (Fig. 9) was measured 

Similarly, the 6 .4  keV X-ray of CoS7 



IV. EXPERIMENTAL METHOD 

Most of the data for this experiment was collected during a 

run at the 450 MeV synchrocyclotron located at Carnegie-Mellon 

University, Pittsburgh, Pennsylvania. Some additional data on 

carbon were obtained at the 600MeV machine of the Space Radiations 

Effects Laboratory (SREL) in Newport News, Virginia. 

A. General Procedure 

A general outline of the experimental method will be 

given first, and then a detailed discussion of the geometry, counters, 

beam characteristics, circuitry, and targets will be presented. 

Pi-mesic atoms were formed by stopping a beam of negative 

pions in a selection of low Z targets and the resulting pionic X-rays 

were detected with either a high-resolution Si(Li) o r  a Ge(Li) spec- 

trometer. 

a coaxial-type channel38 and brought into the counter array through a 

6" X 611 aperture in a two-foot thick concrete shielding wall. 

were momentum-selected by a bending magnet which was placed between 

the counter array and the shielding wall, 

The 75-MeV pion beam from the CMU machine was focused by 

Pions 

The counter array, used to define pion-stops and detect pionic 

X-ray events, is shown in Fig. 11. An energy spectrum of events 

occurring in the detector was stored in a 1600-channel analyzer (Vic- 

toreen, SCIPP) which was gated to accept pulses when a coincidence was 

made between the detector signal and the pion-stop signal. 
J 

A 

33 
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- -  
pion-stop was recorded as a 12C34 coincidence and a fast logic signal 

corresponding to an event in the detector was generated by the "cross- 

over" timing technique, 

Muonic X-rays were observed simultaneously with pionic X-rays 

because of mion contamination in the beam. 

transitions (3p-ls, 4p-ls, 5p-1s) constituted a source of background 

Although the higher muonic 

under each 2p-1s pionic X-ray peak, the 2p-1s muonic lines gave a 

reliable measure of instrumental resolution during the course of each 

pion run. Radioactive sources were used to determine the gain of the 

spectrometers and, in addition, provided an independent check of 

instrumental resolution. 

in separate runs with the beam selected for maximum muon intensity. 

These runs were taken in order to determine the energy and relative 

intensity of muonic transitions so that muon contamination peaks could 

be accurately accounted for in a background subtraction analysis. 

Muonic X-rays for each target were also measured 

B. Geometry, Counters, and Beam Characteristics 

The Ge(Li) and Si(Li) detectors were used in side 

geometry.An order to keep the count rate low, since resolution begins 

to deteriorate at high rates (>2000 counts/sec). The detectors were 

placed on the low-momentum side of the counter array because the 

signal-to-background ratio was measured t o  be higher on this side. 

shown in Fig. 11, each detector was shielded from the beam by lead 

As 

bricks placed adjacent to it and the counter array. The target-defining 

counter and targets were positioned with their centers on axis with 
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the beam and with their faces at an angle of about 45' to the beam 

direction. 

Counters 1, 2, 3, and 4 were plastic scintillation counters 

constructed at William and Mary and consisted of commercial scintillant 

(Pilot Chemical Co. )  optically coupled by means of Lucite light pipes 

to Amperex 56 AVP photomultiplier tubes. 

scintillants were: for 1 and 2, 6" X 6" X 1/4"; for 3, 5" X 5" X 1/16"; 

and for 4, 10" x 10" X 1/8". The target-defining counter (3) was the 

The dimensions of these 

most serious source of carbon background (in the form of carbon muonic 

and pionic X-ray lines) since a pion-stop signature (12e3i) could be 

generated by a pion stopping in this counter instead of the target. 

Therefore the scintillant of 3 was chosen to be only 1/16" thick and, 

in addition, the light-tight wrapping was made of thin (5 mil) black 

plastic. 

constructed much larger than the others. The efficiency of this counter 

measured to be 98% in the anti-coincidence mode. A Cerenkov counter was 

Since 4 was used as an anti-coincidence counter, it was 

V 

used to identify high-energy electrons whose brems9rahlung was a 

potential source of background. The signal from this counter was 

used in the anti-coincidence mode in order t o  prevent storage of this 

background. The two-inch thick Cerenkov counter contained water as a 
V 

radiator and was constructed from a square Lucite frame with entrance 

windows made of aluminized mylar 5 mil thick. The sensitive volume of 

the Cerenkov counter was viewed by two RCA 8575 photomultiplier tubes. 

The efficiency of this counter for discriminating against electrons was 

approximately 50%. 

V 

Each semiconductor detector was used with a different group of 

targets in order to achieve optimum efficiency and resolution. The 



36 

Si(Li) detector was used to measure pionic 2p-1s transitions in the 

lithium (EK = 24 keV) and beryllium (EK =: 43 keV) targets and the 
01 Ci 

Ge(Li) detector was used for the boron (E = 65 keV) and carbon 

(EK =: 93 keV) targets. 

0 . 8  cm x 3 mm and 3 . 5  cm x 5 mm, respectively. 

KCi 
The Si(Li) and Ge(Li) detector sizes were 

2 2 
Ci 

The beam-associated random background was low as a result of 

the "beam pulse stretching" technique 39 employed at the CMU synchro- 

cyclotron. 

beam pulse, which had a spill time of approximately 3 msec. 

structure of the beam pulse was uniform except for a narrow prompt 

spike. All logic circuitry was gated off for the duration of this 

About 70% of the total beam was contained in the stretched 

The 

prompt spike in order to prevent the random background which accompanies 

high instantaneous rates from being stored. The coaxial-focusing 

channel of the CMU machine increased the beam intensity, but also 

resulted in high muon contamination. 

capable of inherently higher beam intensities, did not have a channel 

installed at the time of this experiment and produced a pion beam of 

low muon contamination. However, the pulse stretching at SREL was 

The 600MeV machine at SREL, 

accomplished by means of a vibrating target, resulting in a poorer 

stretched beam than at CMU and, presumably, was a cause of the higher 

background level observed at SREL. 

approximately 20% and 2% for the CMU and SREL beams, respectively, and 

the signal-to-background at CMU was approximately a factor of two higher 

The muon contaminations were 

than at SREL. 

Typical pion stopping rates 

carbon were 2 x 104/sec at CMU and 

(12c3i) in approximately 1 lb. of 

5 x 104/sec at SREL. Polyethylene 
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absorber was used to maximize pion stops in each target. 

range curves for the CMU and SREL pion beams are shown in Fig. 12 and 

13, respectively. 

Differential 

C. Timing Logic 

A block diagram of the circuitry used in this experiment 

i s  shown in Fig. 14. 

generate a gate which allowed the analyzer to accept pulses from the 

detector only when a coincidence occurred between a pion-stop signal 

and a detector signal. 

The main function of this circuitry was to 

In order to generate an appropriate analyzer gating pulse, a 

"tight" coincidence was required between the "fast" pion-stop signal 

and the "slow1' detector signal. 

generated from individual pulses which were fast rising (5 nsec) and 

narrow (10 nsec), in contrast t o  the detector signal at the output of 

the preamplifier which was slow, rising in about 100 nsec and having a 

decay time of 50 usee. 

detector pulse by the lkross-overll timing technique. 

the preamplifier signal is shaped by a delay-line amplifier which 

generates a bi-polar pulse whose zero-crossing point is a stable time 

reference suitable for triggering a fast discriminator. 

a timing signal corresponding to an event in the detector was generated 

in SCA1 antr constituted the input to the "fast-slow" coincidence 

circuit, COINC 4 .  

(12c34) which was generated in COINC 1, 

a delay-gate generator which provided a signal of the appropriate width 

and delay for gating the analyzer. 

The pion-stop signal (12c3;) was 

A fast timing signal was generated from the slow 

In this technique, 

In this manner, 

The "fast" input represented a pion-stop signature 

The output of COINC 4 triggered 
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That part of the circuitry which includes the time-to-amplitude 

converter (TAC) and timing-analyzer (400 channels) was used initially 

to bring the vvfastlv and vtslowlv pulses into coincidence and also 

served to monitor the timing resolution throughout the experiment. 

The "fasttt and "slowt1 timing signals constituted the START and STOP 

inputs to the TAG (EGG, Model TH200A) which generated an analog output 

signal proportional in amplitude to the time difference between the 

START and STOP signals. 

generated internally whenever a stop input was accepted by the TAC. 

The analog output of the TAC was stored in the memory of the timing 

analyzer, with time-correlated events accumulating as a peak and random 

events as "flatv1 background. 

8 

An additional signal, VALID STOP OUT, was 

The routing logic prescribed the manner in which these random 

and time-correlated events were stored and permitted a simple and 

direct determination of the time difference between correlated "fast" 

and tlslowll inputs to COINC 4 .  

stored subject to one of the following requirements: 

Accordingly, all timing events were 

(1) no coincidence occurred between the router inputs. The 

analyzer signal was then stored in the first 200 channels, 

or 

(2)  a coincidence occurred between router inputs. The analyzer 

signal was then stored in the second 200 channels. 

If the correlated vtfasttl and llslowtv timing signals into COING 4 were 

initially out of time by T, clearly requirement (2) could only be 

satisfied by random coincidences made in COINC 4. 

coincidences corresponded t o  a definite range of time intervals between 

These random 
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the inputs to the TAC; as a result, a trough (center at channel X) 

appeared at a time T away from the timing peak and its inverted image 

at channel 200 + X (Fig. 15a). 

mined by the resolving time of COINC 4 .  

were brought into time at COINC 4,  requirement (2) could be satisfied 

by time-correlated events. 

The width of this trough was deter- 

When the fast-slow signals 

The trough then appeared at the channel 

location of the timing peak (X + T) and the peak itself was stored 

in channel 200 + X + T (Fig. 15b). 

correlated detector signal were then in time coincidence. 

resolution, as determined from the base of the timing peak, was 

approximately 300 nsec for this experiment, with the largest contri- 

bution resulting from the time-jitter of the qlslowll signal. 

The pion-stop signal and its 

The timing 

D. Resolution Optimization and Gain Calibration. 

In order to achieve the highest resolution under 

experimental conditions, the following effects were considered: 

1. total count rate in the detector 

2 .  extraneous noise pick-up 

3 ,  system drifts. 

The primary source of the degradation in resolution with 

increasing count rate is the main amplifier and is due to the random 

overlap of one pulse with the undershoot of the preceding pulse. This 

undershoot can be minimized by selecting llshortfq time constants in the 

amplifier shaping network and by using pole-zero cancellation (section 

111-6). 

inherently high S/N and,therefore, a compromise was made in the choice 

"Longt1 time constants are, however, typically required for 
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of RC times. In addition to these electronics considerations, count 

rates were kept low by using the detectors in side geometry. For the 

Si(Li) spectrometer, the optimum time constants for best resolution 

were 6.4 psec (differentiator) and 3.2 w e c  (integrator); for the 

Ge(Li) spectrometer equal RC time constants of 1.6 w e c  were used, 

The usual precautions were taken for eliminating electrical 

noise pick-up in the system: 

1. all electronics in the detector signal chain were 

powered from a common-ground outlet. 

2. signal-carrying cables were located such that noise 

induced from other cables and components was minimized. 

Care was also taken to keep sources of mechanical vibrations out of 

the immediate experimental area. 

System drifts were minimized during Ge(Li) runs by the use of a 

digital gain stabilizer (Canberra, Model 1495) which stabilized on a 

reference peak generated by a radioactive source. 

of the gain stabilizer occurs when the reference peak is located at 

the upper end of the energy spectrum since gain changes are more easily 

detected in this range, However, due t o  the low-energy background 

associated with such a reference line, a source was selected whose 

highest energy was below all experimental lines of interest. For the 

Ge(Li) spectrometer, the 60 keV line of Am241 was used as a reference 

peak. The experimental lines measured with this detector occurred in 

an energy range between 52 keV and 93 keV. 

experimental lines were observed between 6 keV and 43 keV and precluded 

Optimum performance 

For the Si(Li) detector, 

the use of a stabilizer. Typical drifts observed during the course of 
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the experiment were approximately 0.3 channel/day for the Ge(Li) system 

(gain = 0.192 keV/ch) and 0.5 channel/day for the Si(Li) system (gain= 

0.076 keV/ch). Individual suns for a given target typically consisted 

of four and,in some cases, eight hours of data accumulation. 

The resolution of the Si(Li) spectrometer, as measured from 

the muonic 2p-1s line (33 keV) of Be9, was 0.62 keV FWHM. The Ge(Li) 

gave a resolution of 1.1 keV FWHM for the muonic 2p-1s line (75 keV) of 

C12. These figures represent less than 10% degradation in resolution 

as measured under laboratory-controlled conditions with radioactive 

sources. 

Radioactive sources were used to determine the gain of the 

spectrometers. Calibration spectra, under beam conditions and with 

no pion-stop requirement, were taken before and after each pionic run. 

The following lines40y41 of Am241 and were used for 

calibrating the Si(Li) and Ge(Li) spectrometers: 

Si (Li) , Gain 0.076 keV/ch Ge(Li), Gain 0.192 keV/ch 

Am241: 59,568 + 0.017 keV Am241: 59.568 f 0.017 keV 

Am241: 26.364 f 0.017 keV 67.751 f 0.001 keV 

84.693 f 0.001 keV 

100.107 f 0.001 keV 

E. Targets 

Pertinent information on the targets used in this experi- 

ment is given below. 

frames with 5 mil mylar windows which covered the target area. 

The target holders consisted of square plastic 

The 

beryllium and carbon targets required no holder. 
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Target 

L i 6  
(separated)  

~i 7 
(natura  1 ) 

Be 
(natura  1 ) 

81 0 
(separated)  

B 1 1  
(nat  u r  a1 ) 

/ 

C12 
(natura  1 ) 

Form - Size  - Mass Pur i ty  - 
124.5 gms t o t a l  l i th ium = 99.9 % 5J$%S%1'X1ff sheets 

of  t h i s ,  L i 6  = 95.63% 
~ i 7  = 4.37% 

200 gms t o t a l  l i th ium = 99.9 % 7"X7"X1'' f o i l  
of t h i s ,  L i 7  = 92.58% 

L i 6  = 7.42% 

500 gms t o t a l  beryllium=98.0 % S1X5"X0. 7" shee t s  
of t h i s ,  Be9 =100.0% (own holder)  (3) 

100 gms t o t a l  boron = 93.16% 6ffX6"x3/81f granules  
of t h i s ,  B I O  = 92.67% 

B l 1  = 7.33% 

454 gms t o t a l  boron = 99.8 % 71%7"X3/4'r granules  
of  t h i s ,  B l 1  = 80.22% 

B I O  = 19.78% 

440 gms t o t a l  carbon = 99.8 % 
of t h i s ,  C 1 2 =  98.89% 

6f1X6"X1 / 2" p l a t e s  
(own holder)  

c13= 1.11% 

i 

The separated L i 6  and B I O  t a r g e t s  were obtained from Oak Ridge 

National Laboratory; t h e  L i 7  and B1l t a r g e t s  from the  United Mineral 

and Chemical Company; t h e  Be9 shee t s  from t h e  Brush Beryllium Company; 

and t h e  C12  p l a t e s  from t h e  Products Div i s ion  of Union Carbide. 
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V. DATA ANALYSIS 

The natural line width associated with the 2p-1s transition in 

a pi-mesic atom is a direct measure of the nuclear absorption rate of 

pions from the 1s atomic level and is the physical quantity of interest 

in this experiment, 

line shape for the 2p-1s energy distribution can be described by a 

As pointed out in the introduction, the natural 

Lorentzian function: 

A 
L(E)  = (E-E2p- 1 s )2 ' ("absn/2)2 

= FWHM abs' = mat where w 

and W a b S  = nuclear absorption rate of pions 

Y 

from 1s level. 

Experimentally, this Lorentzian distribution of energies is measured 

with a spectrometer which imposes its own characteristic line shape 

since the system resolution is not negligible compared with natural 

widths. 

effects of spectrometer and natural line shapes. 

nature of the experimental background also affects the observed line 

shape. 

required that the complications introduced by the spectrometer line 

shape and background be understood and taken into proper account. 

These considerations determined the procedure used in the data analysis. 

The specific methods used in analyzing the data to obtain rnat for each 

Thus, the observed 2p-1s pionic lines represent the combined 

In addition, the 

The accurate unfolding of rnat from raw experimental data, then, 

43 
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target will be discussed in the remaining sections. In section A, 

a description is given of the combined effect of the natural line 

shape and the spectrometer line shape; in section B, the methods 

used for obtaining rnat from experimental data are presented; and in 
section C, the error analysis for each target, as well as the final 

results for r is given. nat' 

A. Line Shapes and Width Relations 

In the absence of experimental background, the observed 

line shape can be described in terms of the combined effect of three 

independent processes: 

1 .  

2 .  

3 .  

photon emission corresponding to 2p-1s pionic transitions, 

photon detection and subsequent conversion to charge, 

signal amplification and processing f o r  final storage of data. 

density function can be associated with each of the above 

processes and, then, the methods of mathematical statistics 42 used to 

determine the theoretical line shape. Although the mathematical results 

which will be obtained here have been derived previously for analogous 

problems in physics, this discussion will serve to illustrate their 

validity for/this specific line shape problem. 

A probability density function, f (x), defines the probability 

that a random variable - x will assume a value in the interval x P  - x1 

according to the following relation: 

f(X) dx = probability that - X assumes a value between X 2  and xl, i' 
x1 



A random variable is defined as a number associated with the outcome 

of a "chance experiment." Thus, the Lorentzian function L(E) given 

above is the probability density function describing the energy 

distribution of individual photons which are emitted in a pionic 

2p-1s transition. 

random variable and the random time emission of a photon constitutes 

the "chance experiment." 

the effects of the detector a.nd electronics on the total line shape. 

Once the proper random variable has been chosen for each process 

affecting the measured line shape and a corresponding probability 

density function determined, the general rules of mathematical statis- 

tics can be used to give directly the analytical form expected for 

the observed line shape. Accordingly, the processes affecting the 

The energy of an arbitrary photon represents the 

A similar identification can be made for 

line shape, the appropriate raridrm variables, and the corresponding 

probability density functions are given below. 

Probability Density 
Process Random Variable Function 

Photon emission Lorentzian: 
from 2p-1s pionic 
transitions. given 2p-1s L( Eph ' mat ) transition. 

Conversion of AEde t :  deviation G aus s i an : 
photon energy to -- f i - o ~  mean 
charge. energy i n  the con- G ( A E d e t  ' r d e t )  version process. 

Random effect of A E e l  : deviation Gauss ian : 
noise on amplitude - from mean 
of energy signal. amplitude of the G(AEe1 

energy signal. 
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The random va r i ab le  represent ing the  observed energy d i s t r i b u t i o n  can 

now be wr i t t en  as t h e  sum of  t h r e e  s t a t i s t i c a l l y  independent random 

va r i ab le s :  

The t o t a l  l i n e  shape is  descr ibed by t h e  probabi 1 i t y  dens i ty  func t ion  

assoc ia ted  with t h e  random va r i ab le  Eobserved. 

t h i s  dens i ty  funct ion now becomes a s tandard s t a t i s t i c s  problem whose 

The determination of 

so lu t ion  i s  out l ined ,  f o r  example, i n  re ference  42.  Spec i f i ca l ly ,  i f  

X i  and X 2  a r e  s t a t i s t i c a l l y  independent random va r i ab le s  described by 

p robab i l i t y  dens i ty  funct ions f l  (XI) and f 2 ( X 2 ) ,  respec t ive ly ,  then, f o r  
- - 

where f(Y1 i s  t h e  p robab i l i t y  dens i ty  funct ion descr ibing v. Thus, i n  

order  t o  obta in  the  l i n e  shape due to  the e l ec t ron ic s  and de tec to r  ( i . e . ,  - 
spectrometer l i n e  shape) ,  one has  t o  evxluate  the  convolution i n t e g r a l  of 

two Gaussians: 

where u = -7%- 
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This integration is done in 

f ( Y )  = 

, 

Appendix A and yields: 

This is the well-known result that two Gaussians "fold" together to 

give another Gaussian whose width is quadratically related to the 

individual widths: 

For contrast, the convolution integral for two Lorentzian functions 

(evaluated in Appendix B) results in a Lorentzian function whose total 

width is related linearly to the separate widths: 

= r + r2 %ot  I 

The expected energy distribution for pionic 2p-1s X-rays required the 

evaluation of a convolution integral €or a Gaussian and Lorentzian 

function : 

f ( x )  = L( Y )G( x-Y)dY 

Although this integral, known as the Voigt integral, cannot be evaluated 

in closed form, its properties have been studied extensively. 43 

tabulation of Voigt profiles, based on numerical integration techniques, 

has been given by Davies and Vaughan44 for a wide qange of Gaussian to 

Lorentzian ratios and for which an accuracy of one part in lo4 is claimed. 

This table of Voigt profiles was used to fit experimental 2p-1s pionic 

A recent 

lines. * A  detailed discussion of the fitting procedure is presented next. 
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B. Natural Line Width Analysis 

Pionic 2p-1s data from all the targets, except the lithium 

isotopes, were analyzed by the same general method in order to 

obtain r 

separately after the general method is described. 

The analysis of the lithium data will be discussed nat 

1. General Method: Be9, Bl0, Bll, and C12 Analysis 

In the general method, r was obtained from each run by na t 
fitting a Voigt profile to the pionic 2p-1s data after the subtraction 

of muonic background lines. 

by a simple function (Mx t I ;  M = slope, I = intercept) and was 

included as part of the Voigt fit. The muonic background subtraction 

analysis will be described first and t h e n  the Voigt fitting procedure 

for obtaining rnat will be presented, 
fitting for the data analysis were done on an IBM 360-Model 50 

computer. 

Random background could be represented 

All computations and curve 

a. Muonic Background Subtraction 

Muonic 3p-ls, 4p-1s and Sp-1s peaks occurred in the 

energy range used f o r  the analysis of the pionic 2p-1s peak for each 

target. Gaussian curves of the appropr ia te  width, center, and ampli- 

tude were generated to represent the muon background lines far.each 

run and were subtracted from the experimental data. 

parameters were determined from an analysis of the corresponding muonic 

lines in separate muon runs and by normalizing the results to each pion 

run. 

The Gaussian 

The 26-1s muonic line was uncontaminated in both muon and pion 
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runs and was used as the reference peak in the normalization. 

specific background subtraction analysis proceeded in the following 

manner : 

The 

1) Muonic lines from pion and muon runs were fit by a least 

squares technique to the function: 

where : X = channel number 

Y ( x )  = counts in channel x 

A = amplitude 

X = 

I' = 2.35~ (FWIiM in channels) 

- 
center channel of peak 

Mx .+ I = linear background term 

2) The analysis of muonic lines from muon runs permitted 

relative intensities and center channel differences to 

be determined; i.e., - 
Ai (IJ run)  

relative intcnsity: 

- - 
1' 

center channel difference: Axi = xi - x 

where i refers to the 3p-ls, 4p-ls, o r  5p-1s muonic transitions, and 

x1 and A 

alone was used to determine the relative intensity since the widths 

were essentially constant in the energy range from E2p-l 

refer to the 2p-1s trailsition. The ratio of the amplitudes 
1 

to E5p-ls' 

3) The analysis of the 2p-1s muonic lines from the pion runs 

gave amplitudes and centers from which 3p-ls, 4p-ls, or  
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5p-1s peaks could be generated in the form of Gaussian 

curves; i.e., with - 
- - 

(IT run) = x ( n  run) + Axi and xi 1 

Ai ( R  run) = A, ( n  run)Ri, the functions 

Yi(x) = Ai(n run) e were 

The width of the muonic 2p-1s line in the 

- ( x  - i i ( n  run))2/W 

generated. 

muon run for each target was used to determine u. 

4) The value of the generated Gaussian function at each 

channel was subtracted from the pionic 2p-1s data. 

The muonic transition energies and relative intensities are listed in 

Table 111. 

b. Voigt Profile Analysis 

As pointed out in section V-A, a Voigt profile cannot 

be represented in closed form by a simple analytic function. 

precluded a usual least squares fitting procedure. 

Voigt curve €it t o  the 2p-1s pionic data, a computer program was de- 

vised which used the family of Voigt profiles tabulated by Davies and 

V a ~ g h a n ~ ~  to perform a "search" and select the Voigt curve which best 

fit the data. 

and Vaughan. 

through 22. 

a family of 27 Voigt profiles in which the ratio of Gaussian width 

This fact 

In order to make a 

Table IV is the Voigt profile tabulation given by Davies 

The pertinent columns for this analysis are 3,  4,  and 8 

Columns 8 through 22 and the corresponding 27 rows define 

(FWHM) to total width (FWHM) ranges from 0.083 to 0.939. This ratio is 
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called the Gaussian fraction (G.F.) and is tabulated in column 4 .  

Similarly, the Lorentzian fraction ( L . F . )  is listed in column 3 and 

is the ratio of the Lorentzian width (FWHM) to the total width. 

This table of Voigt profiles is given in terms of relative quantities 

and requires values for the amplitude and total width in order to 

have absolute meaning. 

is given as a fraction of the total width. 

represents two points on the abscissa which are symmetric about the 

center of the profile. 

ordinate is given as a fraction of its amplitude and ranges from 

0.01 to 0.95, 

for all profiles, the fraction of the total width at one-half of the 

amplitude is unity. From the previous description, it becomes clear 

that a given Voigt profile could correspond to many Voigt curves, 

with each curve having different Gaussian, Lorentzian and total 

widths, but with the restriction that the G . F .  (or  L.F.) is the same 

for all curves. Thus, the term Voigt profile will refer only to the 

relative quantities given in Table IV and Voigt curve will refer to a 

specific curve generated from Table 1V for a given value of amplitude 

and width. 

For example, the argument of a given profile 

Each fraction, then, 

The value of a given profile along the 

A column corresponding to 0.5 is not listed since, 

The range of profiles (defined by extreme values of G.F. and L.F.) 

given in Table IV was sufiicient f o r  the widths involved in this experi- 

ment but the profile density, or number of profiles per change in 

L.F. (or G.F.), was too low. The profile density should be high enough 

such that the change in the Lorentzian width between any two profiles 

with the same total width is negligible compared with the error intro- 

duced by experimental statistics and background. In order to satisfy 
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this criterion, the number of profiles was increased by interpola- 

tion between rows. Thus, the number of profiles, and the corresponding 

number of values for G.F. and L.F. were increased from 27 to 1000. 

The interpolation program was an internal subroutine written by IBM 

and had a convergence criterion of 0,001. 

of Voigt profiles for a point-by-point comparison to 2p-1s pionic 

peaks, several further modifications we're required. From Table IV, 

a Voigt curve is defined by only 31 points and in such a manner that 

makes a point-by-point comparison with experimental data difficult. 

Therefore, the interpolation program was used as a part of the main 

program to interpolate between the 31 points and give the value of 

the Voigt curve at any arbitrary point. In addition, a subroutine 

was also'written which ordered the one-to-one correspondence between 

In order to use the table 

the value of a I 'o igt  curve and i t ;  argument i n t o  a monotonic sequence 

from low channels t o  high channels. Finally, a linear term (Mx + I), 

whose two parameters were variable, was added in order to take the 

random background into account For each run. 

Before a final fitting procedure was selected, six Voigt 

profiles were generated in order t o  s t u d y  the behavior of the Voigt 

parameters. 

approximately, to those of the observed line shapes for each target. 

Each of these Voigt curves was analyzed by a least squares fit t o  

the following functions: 

The parameters of tliesc profiles W L I ' L '  chosen to correspond, 
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In all cases, the following relations were observed between the true 

Voigt parameters and those parameters as determined by a best fit t o  

the Gaussian and Lorentzian functions. 

- - 
1) iv = XL = XG, to within tO.05 channel 

parameters were systematically within the 

limits determined by the Gaussian and Lorentzian fits. 

G.F. or L.F. became large, the parameters as determined by the Gaussian 

Moreover, as the 
d 

or Lorentzian fit were, respectively, closer to the true Voigt parameters. 

This behavior provided a convenient method of determining the ranges 

for the variable parameters in the Voigt search program. 

2p-1s peaks from each run were analyzed by a least squares fit to 

Gaussian and Lorentzian functions in order to establish reasonable limits 

Thus, pionic 

on the total width, amplitude, center, slope, and intercept. 

There were several ways to implement a search program for select- 

ing the best Voigt fit to experimental data, depending on which 

parameters were free and which were held fixed. With a linear term 

(Mx t I) added to the table of Voigt profiles, there are a total of 7 

parameters and 2 equations of contraint which exist to specify the family 

of Voigt curves used in the search: 
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A = amplitude 

X = center  
- 

= Voigt width, FWHM 

= width, FWHM, of Gaussian component (spectrometer resolut ion)  

= width, FWHM, of Lorentzian component (na tura l  l i n e  width) 

rinstr 

mat 
M = slope of  background 

I = i n t e rcep t ,  and the  

equations of cons t ra in t  G.F. = and L.F.= -. mat 
r V  r V  

For a given p r o f i l e  ( d e f i n i t e  G.F. o r  L.F.), t he re  a r e  only 5 independent 

parameters, the  o ther  two parameters being determined by the  equations of  

cons t ra in t ;  - i . e . ,  A ,  X ,  M y  I ,  rv or  rnat o r  rinstr.  

l i n e  width, rinstr, was taken as a constant f o r  each run s ince  an 

independent experimental measurement of spectrometer reso lu t ion  was 

ava i lab le .  

- 
The instrumental  

The muonic 2p-1s background l i n e  i n  each pion run accumulated 

simultaneously with the  p ionic  2p-1s peak and, therefore ,  gave a r e l i a b l e  

during each run. A f ixed  rinstr introduced an instr measurement of r 

addi t iona l  a n s t r a i n t  s ince  it spec i f ied  rnatand rv  f o r  each p ro f i l e .  - 
Therefore, the Voigt f i t t i n g  procedure was se lec ted  according t o  the  

following requirements: 

1) parameters A, g, M, and I were f r e e  t o  vary 

was chosen constant f o r  each pion run 
r . 2, rinstr 

3) G.F. 2 jnstr, L.F. E h, Therefore, because of 
5 

requirement 2 ) ,  each p r o f i l e  had f ixed values f o r  

r and mat. 
V 
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I 

4) Gaussian and Lorentzian f i t s  should p lace  limits on t h e  

values o f  A,  i ,  M, I ,  and r,. 

For each run, t h e  constant value of rinstr and t h e  limits placed 

on r,, by the  Gaussian and Lorentzian f i t s  were used t o  determine the  

range of  G.F. (and, hence t h e  family of Voigt p r o f i l e s )  t o  be used i n  

t h e  search.  For each p r o f i l e  within t h i s  range, t he  parameters A ,  X ,  

M, and I were va r i ed  i n  d i s c r e t e  s t e p s  over t h e i r  ranges as def ined by 

t h e  Gaussian and Lorentzian f i t s  u n t i l  a b e s t  Voigt f i t  was obtained. 

A chi-squared tes t  was used as t h e  b e s t - f i t  c r i t e r i o n  for  each Voigt 

- 

curve wi th in  the  search ,  with 

x =  2 f (Yi(data) - Yi(Voigt)): 

1=1 ai (data) 

where n = channel range i n  f i t ,  

- ui(data) = 4-f 

Yi(data) = number of counts i n  ith channel. 

2 
The quant- i tyx 

and the  value of  rnat 

was re t a ined  as the  "best  f i t "  value.  For a l l  runs,  t h e  Voigt parameters 

was computed f o r  each Voigt curve generated i n  the  f i t  
2 

(as well as r,) corresponding t o  the  minimumx 

determined from the  search program were wi th in  t h e  limits s e t  by the  

Gaussian and Lorentzian f i t s .  In addi t ion ,  t he  Voigt parameters were 

c l o s e r  i n  value t o  t h e  Gaussian o r  Lorentzian r e s u l t s  when t h e  G.F. o r  

L.P,  was l a rge r ,  
2 

The values of mat, rinstr# rV, and the  minimwnx obtained for  

ind iv idua l  runs i n  each t a r g e t  are l i s t e d  i n  Tables V, VI, VII, and VIII. 
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The errors quoted on the widths include uncertainties due to background 

, 

subtraction and are discussed in detail in section C. As a test for 

the goodness of fit, the values of x2 listed should be compared with 
the theoretical values of x2 for data which have obeyed a function 

where n is the number of data points used in the fit and p is the 

number of adjustable parameters. 

values of x 2  were generally acceptable, except for the carbon fits. 
The high values of x2 for these sets of data are attributed primarily 
to the subtraction of muonic contamination lines, which, in the'case 

of carbon, constituted the largest relative fraction of counts under 

the pionic peak. 

by a linear term over a wide channel range (120 channels) also contri- 

buted to the higher values of x2. 
effects are reflected in the larger errors on I' 

The larger values of r instr  in the additional carbon runs taken at SREL 

Based on this test, the experimental 

In addition, the approximation of the random background 

The uncertainties due to these 

for the carbon runs. 
V 

(K run numbers) were due to the poorer quality FET used in the pre- 

amplifier when an FET failure necessitated a quick replacement. 

Examples of Voigt fits to the muonic-background subtracted data 

are given in Fig. 16 and 17 for beryllium and carbon, respectively. 

Plots of raw experimental data are given in Fig. 18 through 27 for 

typical pion and muon runs in each target. 

2. Li6 and Li7 Analysis 

The complicated nature of the background in the lithium 

spectra precluded the use of the Voigt search technique for obtaining 
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. In addition to the expected muonic contamination lines from %at 
the lithium targets, higher transitions in carbon and oxygen were 

also present. 

used for the analysis: 

The following lines occurred in the channel range 

In addition, the v-Ka(Li) line was contaminated by r-La(C12) events 

and, therefore, could neither be used to determine rinstr nor as a 

reference peak for generating the remaining v-Li background lines. 

The oxygen lines were attributed to contamination of the targets and 

the carbon lines resulted from pion stops in the scintillant of counter 

3. In order to account properly for these background lines in the 

analysis, separate runs were taken with pions stopping in a carbon 

target and muons stopping in the lithium targets. 

"random" background was also more complicated, being composed of both 

The shape of the 

a broad curved component, centered on the low energy side of the 

pionic 2p-1s-,peakY and a linear part. 

attributed to backscatter events which resulted from the pionic 2p-1s 

The curved component was 

line (2.24 keV) and the combined oxygen (v-L,=25 keV) and carbon 

(r-LB=25 keV) lines. 

generate such a curved background was verified experimentally by 

using a Cd109 source (intense line at 22 keV) positioned between two 

The possibility that backscatter peaks could 

equally thick sections of the Li6 target in order to simulate the 

backscatter geometry. 

background component, is shown in Fig. 28a. 

spectrum obtained with normal geometry is shown in Fig. 28b. 

The resulting spectrum, indicating a curved 

For comparison, the Cd109 
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These background considerations determined the method by which 

The observed the lithium data were analyzed in order to obtain mat. 
2p-1s pionic line shape was assumed to be a Gaussian, G(Av, 2v, rv), 
and the background components were approximated by separate functions 

having a tofa1 of 6 variable parameters. 

data to this nine-parameter function determined I',, for each run. 

rinstr 
tion before and after each run. The natural line width was then 

A least squares fit of the 

was obtained from the 26.36 keV line of Am241 used for calibra- 

obtained from the Voigt table, using the Lorentzian fraction ( rnat/I',,) 
which corresponded to the Gaussian fraction determined from I' 

rinstr* 
result, the error introduced into I" 

for the pionic 2p-1s peak was negligible. 

and 
V 

The G.F. for each run was typically 0.8 to 0.9 and, as a 

by assuming a Gaussian line shape V 

The specific form of  the function used in the least-squares fit 

to the pionic lithium data was determined from the following considera- 

t ions : 

1) pionic 2p-1s peak: A Gaussian line shape was assumed 

for the pionic 2p-1s peak. 

2 1  IT-L (cl2) and P - L ~ ( O ~ ~ )  background lines: from relative 

intensities obtained in separate pion and muon runs, the 

ratio of the n-L (C12) amplitude to the v-La(Ol6) amplitude 13 

was estimated to be approximately 10/1. The centers of 

these two lines were the same within - + 0.5 channels. 

Therefore, these lines were treated as one Gaussian with 

its center equal to that of the n-L ( C l 2 ) ,  its width equal to 

rinstr$ 

6 

and with a variable amplitude, A,. 
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3) 

4) 

5) 

The f i n a l  

u - -L (L i ) ,  u -La ,  (Li)  and IJ -L, (Li) background l i n e s :  

muonic runs i n  l i thium, the  r e l a t i v e  i n t e n s i t i e s  of these  

from 
1 " 

l i n e s  were approximately 1, 0.15 and 0.06, respec t ive ly .  

Thev-L (Li) andu-L (Li) l i n e s  were neglected because of  

&eir small  amplitude compared with t h e  p ion ic  2p-1s 

amplitude. T h e v - L  ( L i )  l ine  was t r e a t e d  as a Gaussian 

peak with a f ixed  cen te r  determined from t h e  muon run, a 

f ixed  width given by rinstr, and a va r i ab le  amplitude, Ap. 

curved background: 

funct ion with a l l  parameters (AB, 'B' r B ) var iab le .  

f l a t  background: 

Y 6 

B 

t h i s  was approximated by a Gaussian 
- 

t h i s  was approximated by a cons tan t ,  C. 

func t iona l  form used i n  the  l i thium ana lys i s  was the re fo re :  

Y(x) = A,e - ( ~ - i , , ) ~ ( 2 * 3 5 ) ~ / 2 r $  + Ace - ( x-gc) (2 .35)  2/2r fnstr 

- 
where the  va r i ab le  parameters were r,,, X v ,  A,,, Ac, $ 
C. Data from each Li and L i  run over t h e  channel range 364-453 were 

AB, is,  r g ,  and 
6 7 

f i t  by a leas t - squares  method t o  the  above func t ion  i n  order  t o  obta in  

r and, hence, I'nat. 
V 

6 7 
The r e s u l t s  o f  the  L i  and L i  ana lys i s  f o r  each run are l i s t e d  

i n  Tables I X  and X,  respec t ive ly .  

were obtained f o r  each run a s  v e r i f i e d  by the  values  of x 2 .  

Good s ta t is t ical  f i t s  t o  t h e  da t a  

A p l o t  of  
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t he  func t ion  and the  d a t a  f o r  run A-17 is  shown i n  Fig. 29. 

raw experimental da ta ,  including separate muon and pion background 

runs, are shown i n  Figs.  30-34 over t h e  channel range 305-545. 

P l o t s  of 

C. Error Analysis and Fina l  Resul ts  

The e r r o r  on rnat, f o r  a given run, was determined by 

applying the  genera l  rules f o r  t he  propagation of  e r rors45  t o  an 

approximate formula f o r  the  n a t u r a l  l i n e  width given by Allen 46. . 

The values of rnat ca l cu la t ed  from t h i s  r e l a t i o n  agreed with the  

r e s u l t s  obtained from t h e  Voigt t a b l e  t o  wi th in  5%. 

rnat becomes: 

The e r r o r  on 

and A r  are e r r o r s  on the  instrumental  width and the  where A T i  nstr 

t o t a l  (or  Voigt) width, respec t ive ly .  The sources of  e r r o r  a f f ec t ing  

and r t h e  measurement of r instr  

then,  t he  f i n a l  values  of  I' na t 

V 

w i l l  be discussed sepa ra t e ly  and, v 
f o r  each t a r g e t  w i l l  be given. 

1. Instrumental  Line Width 

For a l l  t a r g e t s ,  except l i thium, it was poss ib l e  t o  use the  

muonic K 

2p-1s events were accumulated simultaneously with the  p ion ic  2p-1s 

events ,  many poss ib l e  systematic  e r r o r s  i n  t h e  measurement of rinstr 

were automatical ly  e l iminated.  

background l i n e  as a measure of rinstr. Since the  muonic 
c1 

For example, some e f f e c t s  which could 



3 

61 

have, but  did not ,  introduce a systematic  e r r o r  i n t o  were: na t 
ga in  d r i f t s  during the  course of  each run, 

degradation i n  r e so lu t ion  due t o  beam effects, 

a )  

b) 

c )  effect of t a r g e t  thickness  on r e so lu t ion ,  

d) sporadic  noise  pick-up by the  preampl i f ie r .  

The v-Ka l i n e  i s  lower i n  energy than t h a t  of t h e  corresponding n-Ka 

and, therefore ,  i t s  use as a d i r e c t  measure o f  rinstr could introduce 

an e r r o r  because of t h e  r e so lu t ion  vs  energy dependence of the  de t ec to r ,  

This dependence i s  i l l u s t r a t e d  i n  the  graphs of Fig. 35a and b f o r  t h e  

Ge(Li) and Si (Li )  de t ec to r ,  respec t ive ly .  The s o l i d  curves i n  these  

f i g u r e s  were determined by using rad ioac t ive  sources f o r  approximately 

20-minute accumulation i n t e r v a l s .  The dashed curves were determined 

from measurements of muonic and, i n  one case,  higher  p ion ic  t r a n s i t i o n s  

taken during t h e  course of a t y p i c a l  four-hour run. 

i nd ica t e  the  d i f f e rence  i n  r e so lu t ion  as measured under "laboratory" 

and "running" condi t ions ,  as well  as r e so lu t ion  vs  energy dependence. 

The e r r o r  introduced i n t o  rinstr due t o  using the  loweru-K 

was genera l ly  considered n e g l i g i b l e  except i n  t h e  case of beryll ium. 

For t h i s  t a r g e t ,  the  u -Ka energy i s  33 keV and the  a-Ka energy i s  42 keV. 

The d i f fe rence  i n  r e so lu t ion  a t  these  energies  was approximately 45 v o l t s .  

Therefore,  a co r rec t ion  of  + 45 v o l t s  was added t o  rinstr f o r  each Be run. 

i 

These two graphs 

energy 
a 

For each n-run (except the  L i  runs) ,  rinstr was obtained from 

l i n e  by a least-squares  f i t  t o  a Gaussian funct ion p lus  a a t h e u - K  

l i n e a r  background. The t o t a l  f i t t i n g  range t y p i c a l l y  extended over a t  

least four times t h a t  of the  FWHM (channels).  The da ta  were f i t  over 
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se l ec t ed  channel ranges within t h i s  t o t a l  range i n  order  t o  determine 

t h e  change i n  I' 

var i a t ion  i n  r 
and r e su l t ed  from a change i n  the  l i n e a r  background tern vs  f i t t i n g  

range. 

deviat ion as determined by t h e  computer f i t .  

as a funct ion of  t he  f i t t i n g  range. The t o t a l  ins tr 
d id  not exceed two s ta t is t ical  s tandard devia t ions  instr 

Therefore, nrinstr was chosen t o  be twice the  s tandard 

The value f o r  t h e  

instrumental  l i n e  width was se l ec t ed  from t h e  f i t  over t h e  widest  range 

of channels because the  background was mure r e l i a b l y  represented over 

t h i s  range. 

As noted previously,  thep-K l ine  o f  l i thium was contaminated a 
1 

Instead,  t h e  26.36 keV instr' and could not be used t o  determine r 
2 41 

l i n e  of  An- - ,  appearing i n  c a l i b r a t i o n  runs taken before  and af ter  

Since t h e  c a l i b r a t i o n  instr' each pion run, was used t o  determine r 

runs were not taken during the  .rr-runs, a co r rec t ion  of +23 v o l t s  

(see Fig. 35a and b) was added t o  the  average width of t h e  c a l i b r a t i o n  

Due t o  t h i s  addi t iona l  uncer ta in ty  

was chosen t o  be 
instr' l i n e s  i n  order  t o  obta in  r 

f o r  t h e  l i thium runs,  i n  determining I' 

t h ree  times t h e  s tandard devia t ion  as determined from the  computer 

f i t s  t o  t h e  26.36 keV l ines .  

nrinstr instr 

2 .  Total  Line Width 

The e r r o r  on the  t o t a l  l i n e  width of t he  p ionic  2p-1s peak 

r e f l e c t e d  unce r t a in t i e s  due t o  background sub t r ac t ion  and cons t i tu ted  

a major f r a c t i o n  of  t he  f inal  e r r o r  on t h e  n a t u r a l  l i n e  width. 

o rder  t o  include t h e  effects of background unce r t a in t i e s  i n t o  rv,  a 

number of f i t s  and d i f f e r e n t  background assumptions were used i n  the  

In 
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ana lys i s .  The r e s u l t i n g  spread,  Arv(bgnd), i n  t h e  t o t a l  wi,dth from 

these  f i t s  was taken as an estimate of the  e r r o r  on r due t o  
V 

uncer ta in ty  i n  background subt rac t ion .  

t h e  s tandard devia t ion  on the  t o t a l  width t o  ob ta in  Ar 

This  e r r o r  was then added t o  

i .e . ,  v' - 
A r v  = Arv(std.dev.) + Arv(bgnd,) 

Data from a l l  t a r g e t s ,  except l i thium, were t r e a t e d  i n  a similar manner. 
9 1 0  11 1 2  

Among these  t a r g e t s  (Be , B , B and C 1, t h e  worst case was s tud ied  

i n  d e t a i l  and the  percent  e f f e c t  on r 

AT (bgnd.) f o r  t h e  remaining t a r g e t s .  

most s e r ious  background problem, which was due, pr imar i ly ,  t o  the  low 

y i e l d  of  p ion ic  2p-1s X-rays. 

andu-K6 l i n e s  had t o  be subt rac ted  whereas a l l  o the r  t a r g e t s  requi red  only 

the  sub t r ac t ion  of t h e u - K  andp-K l i n e s .  For a t y p i c a l  carbon spectrum, 

the  parameters descr ibing the  background peaks were var ied  p lus  and minus 

one s tandard devia t ion  and used i n  var ious combinations, giving a t o t a l  

was taken as an estimate of V 
The carbon s p e c t r a  exhib i ted  the  V 

In  t h e  carbon runs,  theu-Kg,p-Ky,  

B Y 

of  nine s e t s  of sub t r ac t ion  parameters. 

r e s u l t i n g  from f i t s  t o  these  n ine  spec t r a  was approximately 5% of  r . 
Thus, Arv(bgn&) was assumed t o  be -0% f o r  each run with the  above 

t a r g e t s .  

The t o t a l  change i n  r 
V 

V 

V 
The e r r o r  on the  t o t a l  width was then 

ATv = Arv(std.dev.) + 0.05Tv , 

where AT (std.dev.) was determined from the  l a r g e s t  s tandard devia t ion  

on the  t o t a l  width as given by t h e  Gaussian o r  Lorentzian f i t  f o r  each 

run. 

and of the  v a r i a t i o n  of r 
as def ined above. 

V 

The change i n  r as a funct ion of both t h e  Voigt channel range 
V 

over i t s  e r r o r  was always wi th in  A r v  instr 
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For t h e  l i th ium da ta ,  t he  dependence of  r on the  background 

( sec t ion  B-2) was determined by f i t t i n g  the  d a t a  over d i f f e r e n t  channel 

V 

ranges and with t h e  background parameters being he ld  f ixed  o r  free t o  

vary. 

t o  determine t h e i r  e f f e c t  on the  t o t a l  width. 

of f r e e  parameters ranged from 3 t o  11 and t h e  channel f i t t i n g  region 

from 364-453 t o  400-440. 

taken as an estimate of  Arv(bgnd.) for  the  l i thium da ta .  

e r r o r  on r, f o r  each run was obtained by adding 50 v o l t s  t o  t h e  s tandard 

devia t ion  on t h e  t o t a l  width: 

I n  addi t ion ,  t h e  f ixed  parameters were changed by *lo% i n  order  

A l l  toge ther ,  t h e  number 

The t o t a l  change i n  r,, was 50 v o l t s  which was 

The f i n a l  

b r V  = Arv(std.dev.)  + 50 v o l t s  

A s  a consis tency check, t he  widths of  the  p ionic- l i th ium 

3p-1s peaks were determined. 

t he re fo re  the  sepa ra t e  L i  and L i  runs were r e spec t ive ly  added 

These peaks had f e w  s t a t i s t i c s  and 
6 7 

toge ther .  

l i n e s ,  t h e r e  was evidence of a backsca t te r  peak on t h e  low energy s i d e .  

Thus, a Gaussian funct ion p lus  a f ixed  constant  background tern were 

Although the  3p-1s peaks were f r e e  from muon contamination 

used t o  f i t  the  3p-1s sum da ta  over the  l imi ted  channel range 468-490. 

The t o t a l  widths obtained were: 

6 

7 

rv (L i  ;3p-ls)  = 0.710 keV 

rv(Li  ;3p- l s )  = 0.740 keV 

6 
For comparison, an average o f  the  t o t a l  p ion ic  2p-1s widths of  L i  

L i  (from Tables IX and X) is given: 

and 
7 

6 

7 

TV(Li ;2p-ls)  = 0.686 keV 

Tv(Li ;2p-ls)  = 0.707 keV 
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In  view of  the  e r r o r s  quoted on sepa ra t e  runs, t h e  agreement between the  

p ionic  3p-1s and 2p-1s widths i s  good. 

There are several o the r  general  sources  of e r r o r  which can 

affect a width measurement, bu t  which w i l l  be shown t o  be  neg l ig ib l e .  

These sources  a r e :  

~ a)  s t a t i s t i c a l  e r r o r  on the  s lope ,  M(keV/ch), 

b) n o n - l i n e a r i t i e s  i n  pu l se  height  ana lys i s  system. 

Each w i l l  be considered i n  turn .  

If a l i n e a r  response i s  assumed, t he  conversion from channels 

t o  energy f o r  a width measurement is  given by 

E, and El are c a l i b r a t i o n  energ ies  and x2  and x1 t h e i r  corresponding 

peak channel loca t ions .  I f  no e r r o r  i s  assumed on r t he  e r r o r  on 

r becomes: 
ch ' 

E 

where the  general  r u l e s  for e r r o r  propagation have been used 

t o  c a l c u l a t e  AM. 



66 

I f  the  following t y p i c a l  values 
- 2  

AE2 = hE1 = 2 X 10 keV, 

E2 - E1 = 25 keV, 

x 2  - xl = 130 ch, and 

A X 2  = AX1 = 0.07 ch 

a r e  used, then A r E  = 8 v o l t s .  

a width measurement because of t h e  s ta t is t ical  e r r o r  on t h e  s lope  can 

be considered n e g l i g i b l e  f o r  t h i s  experiment. 

Therefore,  t h e  e r r o r  introduced i n t o  

Non- l inear i t ies  i n  t h e  pulse  he ight  ana lys i s  system affect 

a width measurement i n  two ways: 

1) dev ia t ion  from t h e  assumed l i n e a r  response 

introduces an e r r o r  i n  the  s lope  ( i n t e g r a l  

non- l inea r i ty ) .  

non-uniform channel widths represent  va r i a t ions  

i n  the  s lope  from channel t o  channel and thus  

introduce an e r r o r  ( d i f f e r e n t i a l  non- l inea r i ty ) .  

2)  

The e r r o r  introduced i n t o  the  s lope  as a r e s u l t  of  i n t e g r a l  

non- l inea r i ty  was estimated by using a p rec i s ion  pulser .  47 

peaks s to red  a t  30-channel i n t e r v a l s  were used t o  genera te  t h e  " t rue  

response" o f  t he  system. 

given by any p a i r  of  p u l s e r  d i a l  s e t t i n g s  and corresponding peak 

centers  d id  not exceed 0.2%; i . e . ,  

Pu lser  

The percent  spread among values  of t he  s lope  
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Therefore, an estimate of the error introduced into a width measurement 

due to integral non-linearity was taken to be: 

Ar(integra1 non-linearity) = o.oo2Mrch 

If a typical width of 10 channels is assumed for r AI' is less than 

4 volts for the Ge(Li) spectrometer (M = 0.192 keV/ch) and less than 

2 volts for the Si(Li) spectrometer (M = 0.076 keV/ch), and is therefore 

negligible. 

ch ' 

The differential non-linearity was measured with a Berkeley 

Nucleonics Pulser, Model GL-3, whose specification is an inherent 

differential non-linearity of less than '0.25%. Measurements indicated 

that the channel-width non-uniformity was approximately *l%. 

to obtain a conservative estimate of A F  due to differential non-linearity, 

the assumption was made that every channel in a width measurement system- 

atically deviated from the average channel width by 1%. 

on a 10-channel width would be: 

In order 

Then, the error 

Ar(differentia1 non-linearity) = o.oiMrch 

= 19 volts for Ge(Li) system 

= 8 volts for Si(Li) system 

OR the basis of these estimates, it can be concluded that system 

non-linearities introduced a negligible error into the width measurements. 

The final result for the natural line width of the 2p-1s 

pionic transition in each target was determined by taking a weighted 
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average of  l' 

mat 
e r r o r .  

deviat ions from t h e  mean and by compounding ind iv idua l  e r r o r s .  

l a rge r  of these  two e r r o r s  was s e l e c t e d  as t h e  f i n a l  e r r o r  on t h e  

mean. 

corresponding absorpt ion rates computed from rnat/fi 

f o r  B1' includes a -4% cor rec t ion  due t o  the  20% BIO contamination 

of  t h e  t a r g e t .  

f o r  t he  o ther  t a r g e t s .  

obtained from the  sepa ra t e  runs.  Each value o f  nat 
used i n  the  average was weighted inverse ly  propor t iona l  t o  i t s  

The e r r o r  on t he  mean value of rnat was computed by taking 

The 

The f i n a l  r e s u l t s  are l i s t e d  i n  Table XI along with the  

The l i n e  width 

The co r rec t ions  f o r  i s o t o p i c  impur i t ies  were n e g l i g i b l e  



V I .  DISCUSSION OF RESULTS 

I n  t h i s  s ec t ion ,  a comparison between theory and experiment 

w i l l  be given f o r  t h e  n a t u r a l  l i n e  widths o f  1s states i n  low Z p i o n i c  

atoms. Theoret ical  values f o r  t h e  l i n e  widths are obtained from 

eqs. (3 )  and (4)  of t h e  introduct ion which, f o r  s states,  reduce 

r e spec t ive ly  t o  

mat (S .E . )  = 2Eo(2KoR)2 Im 

and 
r 

-1 /5 - i 2mrVIR/3 f i2Ko  

1 + 2KoR + i 2 m r V I R 2 / 3 1 i 2  

mat (per t . )  = 2 J  V I I ~ l s 1 2 d ~  ( 7 )  

where V I  = vp2 . 

Since the  s-s ta te  wave funct ion is e s s e n t i a l l y  constant over t he  volume 

o f  t he  nucleus, t he  con t r ibu t ion  from the  velocity-dependent p a r t  of t he  

pion-nucleus i n t e r a c t i o n  is  expected t o  be small. 

e x p l i c i t  dependence on a f o r  s s ta tes  i n  eq. ( 3 ) ;  a l s o ,  t h e  corresponding 

gradient  term of  eq. (4)  i s  neglected f o r  s states s i n c e  i t s  contr ibut ion 

t o  t h e  width is  less than 0.5% of t h e  l o c a l  term. 

Thus, t h e r e  i s  no 

Basing h e r  conclusion on eq. (3 ) ,  M. E r i c ~ o n * ~  states t h a t  f irst-  

o rde r  pe r tu rba t ion  theory i s  a v a l i d  approximation f o r  t h e  s-state 

pion-nucleus i n t e r a c t i o n .  This r e s u l t  follows from the  expression 

69 
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obtained f o r  AE i n  t he  l i m i t  a s  R 4 .  For example, eq. ( 6 )  above f o r  

t he  width reduces t o  

lim rnat(S.E.) = 8VIZ3R3/(3a3)  
R - 4  A 

where an = fi2/(m e2> a 

According t o  eq. (7), f i r s t - o r d e r  per turba t ion  theory g ives  f o r  a 

constant  V * r -  

mat (pert. ) = 2VI J{ YlS( r) 1 2d-r 

= 8VIZ3R3/  (3a3) a 

The use of  f i r s t - o r d e r  per turba t ion  theory as a v a l i d  approximation f o r  

t he  p ionic  atom con t rad ic t s  t he  conclusions of Seki and Cromer In  

t h e i r  work, t he  complex 2p-1s s h i f t s  measured by Jenkins e t . a l . ,  were 

used t o  c a l c u l a t e  a square well a--nucleus p o t e n t i a l  by solving the  

Schrodinger equation numerically.  The p r o b a b i l i t y  t h a t  t he  pion i s  

48 . 

i n s i d e  the  nucleus was t h e n  ca lcu la ted  by them using both 

P 

I2d-r E AE / V I  J ~yexac t  SP 

where BE = measured 2p-1s width, 
S P  

V = p o t e n t i a l  ca l cu la t ed  from AE and 
I SP ’ 

= hydrogen-like wave func t ion .  ycoul 
The r e s u l t s  of eq. (9) were approximately a f a c t o r  of two l a r g e r  than 

those  of eq. (8). According t o  these  r e s u l t s ,  f i r s t - o r d e r  per turba t ion  

theory should y i e l d  widths which are too l a rge  by a f a c t o r  of two. 
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In  o rde r  t o  compare theory and experiment, t he  na tu ra l  l i n e  

widths have been ca l cu la t ed  according t o  eqs. ( 6 )  and (7). 

constants evaluated e x p l i c i t l y ,  t hese  become respect ively:  

With t h e  

r,,,(S.E.) = aZ I + R ~  C(vA2b/ZRS)(1  + RZC) - vA2d/R4] keV (1 + R Z C ) ~  + ( V A ‘ ~ / R ” ) ~  

rnat(pert.) = ( fvA2Z3 /R6) [ekRIR2 /k  - 2R/k2 + 2/k31 - 2/k3] keV (11) 

where a = 0 . 7 8 ~ l O - ~  

b = 2 . 6 & ~ 1 0 - ~  

c = 1 . 0 3 ~ 1 0 - ~  

d = 0 . 2 7 ~ 1 0 - ~  

e = 1 . 3 6 ~ 1 0 - ~  

f = 0 . 6 3 ~ 1 0 - ~  

k = -1.03X10-2Z 

R i s  the  nuclear radius  i n  u n i t s  of F 

v is  i n  u n i t s  of MeV F 6 

Z is the  number of protons 

A i s  t h e  number of nucleons 

A constant  nuclear dens i ty  has been used f o r  p and a hydrogen-like wave 

function f o r  Y - Is * 

A 
- n R 3  3 

P =4 

From the  deuteron-model ca lcu la t ion .  of M. Ericson26, v was found t o  be 

165 * 20 MeV F . 6 An independent value f o r  v is  obtained from the  o p t i c a l  
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model calculation of Ericson and Ericson.19 

directly, but can be extracted from the optical potential as an 

"effective vt t .  

This value is not given 

The complete optical potential derived by the Ericsons, 

including one- and two-nucleon contributions, is given in the form 

I -f v (n(r) - i 4 n d o u ( r ) ~ ) v  
T 1 + n ( r ) / 3  

where 1. rn l  and in2 are one- and two-nucleon contributions, 

respectively, representing the local part of the 

interaction, 

2. n is the non-local interaction and contains both 

one- and two-nucleon terms, 

do is a single-nucleon parameter, 

o ( r )  is the nucleon spin density, 

only rn2 and the two-nucleon part of n contain 

imaginary parameters. 

3 .  

4. 

5. 

+ 

An "effective Y" can be obtained from this potential by considering 

each term and calculating its contribution to the imaginary part of 

the potential. 

rise to a strong hyperfine interaction which could affect the experi- 

mental width of a state only because of the level splitting that it 

introduces. 

the strong hyperfine interaction potential is of the form 

The spin density term in the vector cross product gives 

For a spin density proportional to the nucleon density, 

+ + +  + 
-4fi2nd F 1 ( I  F) 1 ~JY- 

rn 7 F(F+1) 7 d r  ' v(H .F . )  = 
T I  
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-+ 
where 1 = nuclear  s p i n ,  

-f 

F = t o t a l  angular momentum of pion-nucleus system, and 

L = o r b i t a l  angular  momentum of pion. 
-+ 

The s p l i t t i n g  induced by t h i s  i n t e r a c t i o n  was estimated using f irst-  

order  pe r tu rba t ion  theory and found t o  be less than 0.1 eV f o r  t h e  

maximum s p l i t t i n g  of  t h e  p state i n  L i  . 6 I t  was, the re fo re ,  considered 

neg l ig ib l e .  

With the  assumption t h a t  both s p i n  and i sosp in  d e n s i t i e s  are 

proport ional  t o  a constant  nucleon dens i ty  and t h a t  t he  hyperf ine 

i n t e r a c t i o n  is  small, t he  o p t i c a l  p o t e n t i a l  can be w r i t t e n  i n  terms 

of constant  2arameters as 

[- m l  - m2 + v - a v  ] v = -  42 
71 

2m 

For absorpt ion from the  s s t a t e ,  only the  imaginary p a r t  of t he  loca l  

two-nucleon term m2 con t r ibu te s  t o  the  width. 

e x p l i c i t l y  by Ericson and Ericson19 and may be wr i t t en  i n  the  form 

(5 = m = c = 1 ) :  

This term is  given 

71 

Im m2 = 4~ I m  Bo(eff)p2 

where I m  Bo(eff)  = ( 1  + m 71 /2M)[Im{Bo + AB(A-l) + AB(F.M.)l], 

with M t h e  nucleon mass. 

The dominating term i n  Im Bo(eff)  i s  the  constant  term Im B 

nucleon s c a t t e r i n g  opera tor  f o r  s-wave pions.  

the  s-wave s c a t t e r i n g  opera tor  depend on cons tan ts  Bk, nucleon sp in ,  and 

i sosp in  and cont r ibu te  t o  order  A ' l ,  

of  the  two- 
0 

The remaining terms i n  

The cont r ibu t ion  of t hese  terms 
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constitutes AB(A-~) which is computed from an expression given by the 

Ericsons and listed in Appendix C of this paper. The Fermi motion of 

the nucleons is taken into account by writing the p-wave scattering 

operator as a translationally invariant quantity in terms of the 

relative velocities of the pion and the two scattering nucleons. 

a result, there is an induced s-wave interaction whose contribution 

to Im m2 is given by 

As 

[Im AB(F.M. ) ]p2 = Im C, (mTI/2M)2(6p;/5)p2 

where p = Fermi momentum = 250 MeV/c. n 

The value of  Im C, is given by the Ericsons to be 0.088 and yields for 

the correction due to Fermi motion 

Im AB(F.M.) = 0.002. 

The factor 1 + mT1/2M is a kinematical correction which multiplies the 

free scattering amplitude in order to account correctly for scattering 

of pions from bound nucleons. Numerically, this factor is 1.07. 

Im Bo(eff) can now be written (fi = c = mTI = 1 )  

Im B,(eff) = 1.07 [Im{Bo + AB(A-1) 1 + 0.0021 

The imaginary part of the optical potential for s states becomes 

VI = -(h2/2m TI ) 4 ~ I m  Bo(eff)p2 

Therefore, in units of MeV F6, the parameter v(eff) is 

v(eff) = -(fi2/2m ) 4~1Irn Bo(eff)(5/m c ) ~  MeV F6 

= -(7.94 x l o 3  MeV F6) Im B,(eff) 
Tr TI 
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The dominant term Im B i s  evaluated from a formula given by 0 
the  Ericsons 19. . 

Im Bo = (1/48)(9 Im e l l  + 3 Im f 3 0 1 )  

where Im 611 and Im 5301 are propor t iona l  t o  the  c ross  sec t ions  f o r  

s-wave pion absorpt ion onto t h e  t r i p l e t  and s i n g l e t  states, respec t ive ly ,  

49 of two nucleons. 

f o r  t he  r eac t ion  p + p -+ T O  + p + p by using the  p r i n c i p l e s  of  d e t a i l e d  

balance and charge independence r e s u l t i n g  i n  

Im 601 was obtained from the  measured c ross  sec t ion  

Im f i o l  = 0.054 * 0.020. 

50 Im 611 was obtained by the  Ericsons from t h e  experimental c ross  s e c t i o n  

f o r  t he  r eac t ion  p + p ;f D + IT', yie ld ing  

Im B~~ = 0.044 f 0.004. 

51  The s-wave cross  s e c t i o n  f o r  t h i s  process has r ecen t ly  been re-measured 

t o  the  same absolu te  p rec i s ion  by studying t h e  inverse  r eac t ion  

a+ + D -F p + p a t  low energies  and was found t o  be a f a c t o r  0.240/0.138 

l a r g e r  than the  r e s u l t s  used by t h e  Ericsons.  This measurement r e s u l t s  

i n  a new value of  Im 611,namely 

Im 6i1 = (0.240/0.138)(0.044) 

= 0.0765 f 0.004. 

The n a t u r a l  l i n e  widths f o r  p ion ic  s states have been ca lcu la ted  

using eqs.  (10) and (11) f o r  values  of v ( e f f )  obtained from eq. (12). 



76 

These r e s u l t s  a r e  l i s t e d  i n  Tables X I 1  and XI11 f o r  values of  Irn B11 

and I rn B l l ,  respec t ive ly .  

s c a t t e r i n g  da ta .  

e r r o r s  i n  experimental parameters i s  approximately lS%. 

t 

The nuclear  r a d i i  were taken from e l e c t r o n  

The uncer ta in ty  i n  the  ca l cu la t ed  widths due t o  

The following conclusions can be made from a comparison of  t h e  

r e s u l t s  given i n  these  t a b l e s :  
I 

1. Theory and experiment agree very well when 811  is used 

i n  t h e  width ca l cu la t ion ,  but  d i sagree  when 6 1 1  is  used. 

Unlike B11, t he  parameter 611 was determined from a cross  
I 

sec t ion  measurement i n  t h e  low energy range where s-wave 

s c a t t e r i n g  dominates and would, t he re fo re ,  seem t o  be a 

more r e l i a b l e  measure of the  c ros s  s e c t i o n  f o r  s-wave 

pion absorpt ion a t  zero energy. In  addi t ion ,  the  recent  

cross sec t ion  measurement from which B11 was obtained reso lves  

a discrepancys1 i n  the  p red ic t ion  of t he  pion photo-production 

cross sec t ion  from the  r eac t ion  p + p -f T+ + D. If B;1 is  

assumed t o  be accura te ,  it can be s t a t e d  t h a t  t he  op t i ca l -  

model p o t e n t i a l  derived by Ericson and Ericson’’ p r e d i c t s  

Is l i n e  widths f o r  low Z atoms which are i n  s u b s t a n t i a l  

f 

agreement w i t h  the  r e s u l t s  of t h i s  experiment. 

The value of v = 165 * 20 obtained by M. Ericson26 i n  the  2. 

deuteron-model ca l cu la t ion  is i n  agreement with the  o p t i c a l -  

model ca l cu la t ion ,  

165 * 20 t o  the  average value,  140,of v ( e f f )  obtained from 

Table XII. 

This conclusion follows by comparing 

Table XI1 must be used f o r  t h i s  comparison s ince  
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the  r e s u l t s  l i s t e d  the re  depend on the  e a r l i e r  c ros s  s e c t i o n  

measurements0 of  t h e  r eac t ion  p + p + T+ + D which was a l s o  

the  one used by M. Ericson i n  t h e  deuteron-model ca l cu la t ion .  

The more r ecen t  c ros s  s e c t i o n  measurement of Roses1 would 

tend t o  fo rce  t h e  value of v obtained from t h e  deuteron- 

model c a l c u l a t i o n  t o  a h igher  value and thus be i n  b e t t e r  

agreement with the  average value of  v ( e f f )  taken from 

Table XIII. 

concluded t h a t  t h e  deuteron model of  M.  Ericson provides an 

adequate desc r ip t ion  of  pion absorp t ion  from the  1s states 

On the  b a s i s  of  t hese  comparisons, it can be 

o f  low Z atoms. 

3 .  The co r rec t ions  t o  the  dominant term Im Bo are not small and 

a r e  e s s e n t i a l  i f  theory i s  t o  agree with t h i s  experiment. 

These cor rec t ions  c o n s t i t u t e  a +60% enhancement of  Im Bo f o r  

6 1 2  L i  and +35% f o r  C . 
4 .  The assumption t h a t  pion absorpt ion proceeds pr imar i ly  by a 

two-nucleon process leads t o  t h e o r e t i c a l  values  f o r  1s l i n e  

widths i n  low Z atoms which a r e  i n  agreement with the  r e s u l t s  

of t h i s  experiment. 

experimental s tud iess2  o f  the  angular d i s t r i b u t i o n  of two- 

This assumption i s  a l s o  supported by 

nucleon emission following pion absorpt ion.  

5. The 1s widths,  r (per t . ) ,  ca l cu la t ed  from f i r s t - o r d e r  

pe r tu rba t ion  theory using VI = v(ef f )p2  are i n  agreement with 

experiment and are approximately 4% l a r g e r  than the  values ,  

r ( S i  E .  ) , obtained from the  Schrodinger equation. These 
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48 results contradict the conclusion of Seki and Cromer 

which were based on earlier width measurements, that first- 

order perturbation theory used to describe pion absorption 

effects is invalid. 

, 

Table XIV is a summary of pionic 2p-1s line widths measured at 

William and Mary, CERN, and Berkeley. The agreement among the various 

experimental results is generally satisfactory for low 2 elements. 

However, wide discrepancies exist for widths measured in elements above 

N14. 

more difficult because of the lower yield of 2p-1s X-rays. 

theoretical widths begin to diverge from the experimental results in 

this range, becoming larger than either CERN's or  Berkeley's results. 

In view of the above inconsistencies as well as the agreement which 

exists between theory and experiment for low Z elements, it would seem 

desirable to have precise measurements made of the 2p-1s line widths 

for elements with 2 > 7 .  

Width measurements for this range of elements become increasingly 

The 
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Room temperature 

1.58 
1.16 

Table I - Noise of TC-130, FWHM (Si), for different first-stage 
configurations at zero external capacitance. 
differentiation was used with equal time constants of 
3.2 psec. 

Single 

Coo led 

- 
0.88 

First-stage 

of TC-130 

Fig. 4a 
Fig. 4b 

Fig. 4c 

Fig. 4d 

Preamplifier noise, FWHM (Si) in keV. 

0.89 

0.64 

0.63 

0.39 

Table I1 - Count-rate in Ge(Li) detector vs resolution ( F W )  of the 
1.33 MeV line of Co6'. 
preamplifier was as shown in Fig. 6. Equal differentiation 
and integrating time constants of l.G psec were used in the 
TC-200 which also had pole-zero cancellation. 

The first-stage configuration of the 

Count rate (lo3 sec-l) Resolution (FWHM) in keV 

13.0 5.30 

8.0 4.44 

5.0 4.01 

3.0 . 3.17 

1.0 2.48 

0.5 2.19 
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9 

Number of  degrees of freedom i n  each f i t  equals 66. 

Widths i n  keV. 

Table V - Results of p ionic  2p-1s width ana lys i s  for  each Be run. 

RUN X2 I' V ri nstr mat Tota l  Counts 

A20 75 1.028*0.095 0.678k0.036 0.562f0.109 4187 

A2 1 79 1.025*0.113 0.674f0.044 0.563*0. 130 1794 

A22 91 0.984f0.097 0.7013U.040 0.467*0.116 3377 

A26 84 1.057"0.098 0.665*0.052 0.623*0.115 1669 

A 3  1 52  1.083t0.097 0.664 0.  (14 G 0.659f0.111 2621 . 

10 Table V I  - Results o f  p ion ic  2p-1s w i d t h  :*iialysis f o r  each B run. 

RUN - 

G5 

G 12 

G 1 3  

G22 

G23 

Number of  degrees o f  freedom i n  each f i t  equals 48. 

Widths i n  keV. 

X 2  ri  [is t r  mat Total  Counts - 

72 2.091'0. 305 1.033f0.115 1.552f0.324 101 1 

74 2.406f0.229 1.033*0.060 1.935'0 236 2686 

41 2.158f0.240 1.018*0.096 1.651f0.254 2354 

82 2.270f0.236 0.985f0.077 1.817f0.245 3477 

56 1.894f0.264 1.075*0.115 1,254f0.292 1387 
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Table VI1 - Results of  p ionic  2p-1s width ana lys i s  f o r  each B1' run. 

Number of  degrees o f  freedom i n  each f i t  equals 48. 

Widths i n  keV, 

R U N 2 L . L  r i n s t r  % a t  Tota l  Counts 

G4 51 2.298*0.270 1.093*0.058 1.749 *O. 280 1823 

61 1 67 2.420t0.223 1.093 *O. 068 1 (. 899*0 232 6715 

G14 60 2.269*0.253 1.104*0.035 1.701*0.261 5308 

Table VI11 - Results of pionic  2p-1s width ana lys i s  f o r  each C12  run. 
Number of  degrees of  rreedoni i i i  each f i t  equals 115. 

Widths i n  keV. 

- RUN x r.i tistr mat Total  Counts 2 

G 1  383 3.459i0.417 1.142-tO.054 3.057*0.420 545 1 

G 2  336 3.440i0.396 1.156.' 0.050 3.025 *O. 399 5475 

G 10 443 3.477i0.481 1.108f0.046 3.101f0.484 9071 

K4 178 4.198i0.475 1.459i0.092 3.658i0.481 5730 

K 6  42 1 3.919t0.355 1.452*0.070 3.349t0.360 24182 

K7 155 3,791*0.450 1.382*0.092 3.255*0,456 2948 

K 8  250 4.022*0.346 1.421*0.072 3.487*0.350 16071 

K l O  204 3.62850.430 1.440f0.070 ' 3.026*0.437 6818 
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6 

Number of degrees of freedom i n  each f i t  equals 81. 

Widths in keV. 

Table I X  - Results of pionic  2p-1s width analysis  for  each L i  run. 

RUN 
I_ 

A18 

A2 5 

A28 

A30 

A35 

x2 rinstr mat Total Counts 

106 0.699*0.074 0.610*0.045 0.159*0.108 4882 

89 0.703*0.070 0.621*0.045 0.147*0 105 5268 

98 0.636*0.077 0.591*0.045 0.083*0.118 2636 

93 0.668*0.072 0.600*0,045 0,123*0.109 4194 

88 0.723*0.071 0.600*0.045 0,215*0.101 3958 

RUN - 

A17 

A23 

A2 7 

A29 

A 3 3  

Results of pionic  
Number of degrees 

Widths i n  keV. 

2p-1s width analysis  f o r  each L i 7  run. 
of freedom i n  each f i t  equals 81. 

nat  Total  Counts I ins tr  I y2 

88 0.682*0.064 0.621f0.045 O . l l l * O .  101 6343 

112 0.717*0.075 0.610*0.045 0.189*0. 107 2879 

78 0.688*0.076 0.562*0.045 0.219f0.105 3149 

114 0.748*0.072 0.607f0.045 0.244f0.100 3476 

107 0.702*0.072 01610f0,045 0.164f0.106 4170 

- Table X - 



Table XI - Weighted average of widths obtained from separate 
runs for each element. 

TARGET 

6 Li 

7 Li 

9 Be 

BIO 

Bl 

0.15 f 0.05 

0.19 f 0.05 

0.58 f 0.05 

1.68 * 0.12 

1.72 f 0.15 

3.25 f 0.15 

0.23 f 0.08 

0.29 f 0.08 

0.88 f 0.08 

2.55 f 0.18 

2.61 f 0.23 

4.94 * 0.23 
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keV. 

ELEMENT RADIUS 

Table XIV - Summary of all 2p-1s line width measurements. Calculated 
I 

widths rnat(S.E.) are for 611. Radii in F and widths in 

He4 

6 Li 

7 Li 

9 Be 

BIO 

Bl 

C12 

N14 

0l6 

0l8 

F l9 

23 Na 

MgZ4 

~1~~ 

2.07 (60) 

3.28 

3.09 

3.25 

3.16 

3.12 

3.11 

3. dS6) 
(58) 3.42 

3. 58(61) 

(62) 3.68 

3.79 (62) 

3.88 (62) 

3.91 (62) 

0.OOfO. 06 163) - 

0.1Sf0.0~ 

0.19*0.05 

0.58*0.0S 

1.68f0.12 

1.72f0.15 

3.25f0.15 

- 

- 
- 

- 

- 
- 

0.39f0.36 

0.S7f0.30 

0.85 *O .28 

1 4f0.5 

2.3f0.5 

2.6'0.5 

4.1f0.4 

9.052 .O 

- 
4.6f2.0 

4.6f3.0 

- 
- 

- 
- 
- 

1.07*0.30 

1.27f0.25 

1.87f0.25 

2.96*0.25 

4.48f0.30 

7 56f0.50 

8.67f0.70 

9.40f 1.5 

10.3f4.0 

- 

- 

0.06 

0.11 

0.18 

0.56 

1.48 

1.75 

3.41 

6.72 

9.69 

10.57 

14.76 

33.57 

41.80 

63.73 
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IX. APPENDICES 

The integral is now in a form which can be evaluated directly; *, 

A. Evaluation of the convolution integral for two 

Gaussian functions. 

The convolution integral for two normalized Gaussian 

functions is 

The integrand reduces to 

The argument of the exponential term is a quadratic function of X 2  

and may be written as a squared term by completing the square. 

integrand then becomes 

The 

where 

a = - (al  2 + 022)/2ata22 and V z x2 - Yai/(6: + a2) 2 

-Y2/202 e fc;(Y) = o/z;;- 
2 2 where a 2  al + a2 

92 
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By the 

in the 

where 

B. Evaluation of the convolution integral for two 

Lorentzian functions. 

The convolution integral for two Lorentzian functions is 

-0s 

method of partial fractions, the integrand can be written 

form 

a x + b  + cx + d I E  
A: + x 2  A: + ( Y  - x ) ~  

2 Y  
4Y2A: + (A; + Y2 - A i ) *  

a =  

A$ + y2  - A: b =  
4Y2A: + (A; + Y 2  - A:)2 

c = -a 

The integral can now be integrated directly and yields 

With constants b, C, and d substituted and after some algebra, f L ( Y )  

reduces to 

where k = A l  + A 2 .  



C. Calculation of A'l corrections. 

94 

A formula has been given by the Ericsonslg for calculating 

the A'l corrections in the s-wave scattering operator for two free 

nucleons : 

( A  - 1 ) 2  

A - 1  

where Im B, = (1/16) Im(Bll - 001) 
Im B2 = (1/16) Im(-3@11 + 1301) 

Im B 3  = (1/.16) Im fiO1 

Im 84 = (-1/16) Im(Bll + 1301) 

Im B5 = (-1/32) Im fiol 

and S = nuclear ground state spin quantum number 

T = nuclear ground state isospin quantum number 

t = pion isospin 
+ 
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XI. FIGURES 

FIGURES 

1. Schematic of Ge(Li) detector (from A. J. Tavendale, 
ref. 28). 

2a. Voltage-sensitive preamplifier configuration. 

2b. Charge-sensitive preamplifier configuration (from 
E. Fairstein, ref. 35). 

3. Typical room-temperature FET preamplifier. 

4. a-d: Four first-stage preamplifier configurations 
studied using TC-130. 

5. 

6 .  

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15a. 

15b. 

Negative high voltage configuration [Si(Li)]. 

Positive high voltage configuration [Ge(Li)]. 

Co60 spectrum measured with Ge(Li) detector. 

CoS7 spectrum measured with Ge (Li) detector. 

Am241 spectrum measured with Si (Li) detector. 

CoS7 spectrum measured with Si (Li) detector. 

Counter array.' 

Differential range curve taken at CMU for pions stopping 
in 1/2" thick C12 target. 

Differential range curve taken at SREL for pions stopping 
in 1" thick C12 target. 

Block diagram of circuitry. 

Sketch of timing-analyzer display for "fast" and 
pulses out of time by T, 

Sketch of timing-analyzer display for "fast" and "slow" 
pulses in coincidence. 
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16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28a. 

28b. 

29. 

30 e 

31. 

32. 

33. 

34. 

Plot  of bes t  Voigt curve f i t  t o  background - subtracted 
Be9 2p-1s p ionic  peak. 

Plot of bes t  Voigt curve f i t  t o  background - subtracted 
C12 2p-1s pionic  peak. 

Raw spectrum of IT- i n  Be . 
Raw spectrum of ~.r' i n  Be . 
Raw spectrum of 8 -  i n  B . 

9 

9 

10 

R ~ W  spectrum of p- i n  B 10 , 

11 Raw spectrum of IT' i n  B . 
11 Raw spectrum of p- i n  B 

Raw spectrum of IT- i n  C 1 2  a t  CMU. 

Raw spectrum of p- i n  C12  a t  CMU. 

Raw spectrum of IT- i n  C 1 2  a t  SREL. 

Raw spectrum of p- i n  C 1 2  a t  SREL. 

Cd109 spectrum i n  backscat ter  geometry. 

Cd109 spectrum i n  normal geofietry. 

P lo t  of bes t  curve f i t  t o  raw L i 7  2p-1s p ionic  peak. 

Raw spectrum of IT- i n  L i  . 
Raw spectrum of 1.1- i n  L i  . 
Raw spectrum of IT- i n  C12 with S i (Li )  de tec tor .  

Raw spectrum of 71- i n  L i  . 
Raw spectrum of ~.r- i n  L i  . 

, 

6 

6 

7 

7 

35a. Resolution vs energy curves f o r  Ge(Li) de tec tor .  

35b. Resolution vs  energy curves for  Si(Li)  detector .  
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ERRATA 

P. 4; 2nd line: Read e2 - f o r  e. 

P.  59; lst, 4th and 6th lines: Read K - f o r  L .  

P .  89; 5th line: Read 0.00 f 0.09 f o r  - 0.00 f 0.06 

P. 96; Ref. 24: Read Yamazaki - f o r  Yamazoki 


